1
|
Mira AF, Hortal J, Portela AP, Albertos B, Estébanez B, Branquinho C, Vieira C, Hespanhol H, Draper I, Marques J, Monteiro J, Leo M, Hurtado P, Ochoa-Hueso R, Varela Z, Medina NG. eBryoSoil: a citizen science application to monitor changes in soil ecosystems. Sci Rep 2024; 14:24577. [PMID: 39426979 PMCID: PMC11490612 DOI: 10.1038/s41598-024-74464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Biological soil covers (BSCs) play a pivotal role in ecosystem functioning by enhancing soil stability, mediating nutrient cycling, and influencing soil hydrology. Recognized as ecosystem engineers, they can physically modify, maintain, or create habitats, facilitating plant community development. Through these intricate interactions, BSCs contribute significantly to ecological processes, highlighting their importance in the overall health and functionality of the ecosystems of the Iberian Peninsula. Here we present the results obtained from the contributions of the citizen scientists uploaded from November 2019 to January 2021 with eBryoSoil, an app that allows citizens to participate in mapping the BSC communities across the Iberian Peninsula. Here, we emphasize the importance of habitats and consequently, their interaction with climatic variables for the persistence of BSCs (lichens and bryophytes). Conservation efforts targeted at preserving diverse habitats are essential to ensure the continued presence of lichen and bryophyte communities. Despite challenges posed by the SARS-CoV-2 outbreak, this citizen science project demonstrated success in utilizing a specifically tailored app to gather valuable information on BSC communities, providing insights into their vulnerability to climate change. This program serves as an illustrative example of how citizen science can effectively identify and study vulnerable habitats, offering a blueprint for future studies focused on understudied organisms.
Collapse
Affiliation(s)
- André F Mira
- Department Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain.
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Programa de Doctorado en Conservación de Recursos Naturales, Universidad Rey Juan Carlos, Madrid, 28933, Spain.
| | - Joaquín Hortal
- Department Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Ana Paula Portela
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Department of Biology, Faculdade de Ciências, Universidade do Porto, Porto, 4169- 007, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal
| | - Belén Albertos
- Department de Botànica i Geologia, Universitat de València, Burjassot, 46100, Spain
| | - Belén Estébanez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Cristiana Vieira
- Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP/UPorto/PRISC), Porto, 4099-002, Portugal
| | - Helena Hespanhol
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal
| | - Isabel Draper
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Joana Marques
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal
| | - Juliana Monteiro
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - María Leo
- Department Soil, Plant and Environmental Quality, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, 28006, Spain
| | - Pilar Hurtado
- Biodiversity and Conservation Area, Universidad Rey Juan Carlos, Madrid, 28933, Spain
- DIFAR, University of Genoa, Genoa, 16148, Italy
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, Universidad de Cádiz, Campus of International Agri-Food Excellence (ceiA3), Cádiz, 11510, Spain
| | - Zulema Varela
- Ecology Unit, Department of Functional Biology, CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15872, Spain
| | - Nagore G Medina
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
2
|
Dal-Ferro LS, Schenider A, Missiaggia DG, Silva LJ, Maciel-Silva AS, Figueredo CC. Organizing a global list of cyanobacteria and algae from soil biocrusts evidenced great geographic and taxonomic gaps. FEMS Microbiol Ecol 2024; 100:fiae086. [PMID: 38816216 PMCID: PMC11221558 DOI: 10.1093/femsec/fiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Biocrusts determine soil stability and resiliency, with a special role played by oxygenic photoautotrophic microorganisms in these communities. We evaluated temporal and geographic trends in studies focused on these microorganisms in biocrusts. Two databases were surveyed to obtain scientific articles published from 1998 to 2020 containing the terms 'biocrusts,' 'algae,' and 'cyanobacteria.' Although interest in biocrusts has increased recently, their ecological importance is still little explored. The scientific articles that mentioned a species list of cyanobacteria and/or algae revealed a very heterogeneous geographic distribution of research. Biocrusts have not been explored in many regions and knowledge in the tropics, where these communities showed high species richness, is limited. Geographic gaps were detected and more detailed studies are needed, mainly where biocrust communities are threatened by anthropogenic impacts. Aiming to address these knowledge gaps, we assembled a taxonomic list of all algae and cyanobacteria found in these articles, including information on their occurrence and ecology. This review is an updated global taxonomic survey of biocrusts, which importantly reveals their high species richness of oxygenic photoautotrophic microorganisms. We believe this database will be useful to future research by providing valuable taxonomic and biogeographic information regarding algae and cyanobacteria in biocrusts.
Collapse
Affiliation(s)
- Luana Soares Dal-Ferro
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Arthur Schenider
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Dabny Goulart Missiaggia
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Libério Junio Silva
- Instituto Nacional de Pesquisas Espaciais, Divisão de Observação da Terra e Geoinformática (DIOTG), 12227-010 São José dos Campos, São Paulo, Brazil
| | - Adaíses Simone Maciel-Silva
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Kurth JK, Albrecht M, Glaser K, Karsten U, Vestergaard G, Armbruster M, Kublik S, Schmid CAO, Schloter M, Schulz S. Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention. Front Microbiol 2023; 14:1169958. [PMID: 37520365 PMCID: PMC10382179 DOI: 10.3389/fmicb.2023.1169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.
Collapse
Affiliation(s)
- Julia Katharina Kurth
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University Munich, Freising, Germany
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Martin Albrecht
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Karin Glaser
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Gisle Vestergaard
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Armbruster
- Agricultural Analytical and Research Institute Speyer (LUFA Speyer), Speyer, Germany
| | - Susanne Kublik
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Christoph A. O. Schmid
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Michael Schloter
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University Munich, Freising, Germany
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Stefanie Schulz
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| |
Collapse
|
4
|
Barrón-Sandoval A, Martiny JBH, Pérez-Carbajal T, Bullock SH, Leija A, Hernández G, Escalante AE. Functional significance of microbial diversity in arid soils: biological soil crusts and nitrogen fixation as a model system. FEMS Microbiol Ecol 2023; 99:6998555. [PMID: 36690342 PMCID: PMC9923382 DOI: 10.1093/femsec/fiad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Microbial communities respond to changes in environmental conditions; however, how compositional shifts affect ecosystem processes is still not well-understood and it is often assumed that different microbial communities will function equally under similar environmental conditions. We evaluated this assumption of functional redundancy using biological soil crusts (BSCs) from two arid ecosystems in Mexico with contrasting climate conditions (hot and cold deserts) following an experimental approach both in the field (reciprocal transplants) and in laboratory conditions (common garden), focusing on the community's composition and potential for nitrogen fixation. Potential of nitrogen fixation was assessed through the acetylene reduction assay. Community composition and diversity was determined with T-RFLPs of nifH gene, high throughput sequencing of 16S rRNA gene amplicons and metagenomic libraries. BSCs tended to show higher potential nitrogen fixation rates when experiencing temperatures more similar to their native environment. Moreover, changes in potential nitrogen fixation, taxonomic and functional community composition, and diversity often depended on an interactive effect of origin of the communities and the environment they experienced. We interpret our results as legacy effects that result from ecological specialization of the BSC communities to their native environment. Overall, we present evidence of nonfunctional redundancy of BSCs in terms of nitrogen fixation.
Collapse
Affiliation(s)
- Alberto Barrón-Sandoval
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, UNAM. Circuito Exterior s/n, junto al Jardín Botánico, Coyacán, Mexico City, 014510, Mexico,Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92627, United States
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92627, United States
| | - Teresa Pérez-Carbajal
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, UNAM. Circuito Exterior s/n, junto al Jardín Botánico, Coyacán, Mexico City, 014510, Mexico
| | - Stephen H Bullock
- Department of Conservation Biology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ctra. Ensenada-Tijuana No. 3918, Ensenada, 22860 Baja CA, Mexico
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av, Universidad 1001, 62210 Cuernavaca, Morelos, Mexico
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av, Universidad 1001, 62210 Cuernavaca, Morelos, Mexico
| | - Ana E Escalante
- Corresponding author: Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, UNAM. Circuito Exterior s/n, junto al Jardín Botánico, Coyacán, Mexico City, 04510. Mexico. Tel: +52(55)5623-7714; E-mail:
| |
Collapse
|
5
|
Chilton AM, Nguyen STT, Nelson TM, Pearson LA, Neilan BA. Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environ Microbiol 2022; 24:5467-5482. [PMID: 35769014 PMCID: PMC9796556 DOI: 10.1111/1462-2920.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/07/2022] [Indexed: 01/01/2023]
Abstract
The soil surface of drylands can typically be colonized by cyanobacteria and other microbes, forming biological soil crusts or 'biocrusts'. Biocrusts provide critical benefits to ecosystems and are a common component of the largely arid and semi-arid Australian continent. Yet, their distribution and the parameters that shape their microbial composition have not been investigated. We present here the first detailed description of Australia's biocrust microbiome assessed from 15 sites across the continent using 16S rRNA sequencing. The most abundant bacterial phyla from all sites were Cyanobacteria, Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Cyanobacterial communities from northern regions were more diverse and unclassified cyanobacteria were a noticeable feature of northern biocrusts. Segregation between northern and southern regions was largely due to the differential abundance of Microcoleus spp., with M. paludosus dominating in the north and M. vaginatus dominating in the south. The geographical shifts in bacterial composition and diversity were correlated to seasonal temperatures and summer rainfall. Our findings provide an initial reference for sampling strategies to maximize access to bacterial genetic diversity. As hubs for essential ecosystem services, further investigation into biocrusts in arid and semi-arid regions may yield discoveries of genetic mechanisms that combat increases in warming due to climate change.
Collapse
Affiliation(s)
- Angela M. Chilton
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesNew South WalesAustralia
| | - Suong T. T. Nguyen
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Tiffanie M. Nelson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Leanne A. Pearson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Brett A. Neilan
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
6
|
Salazar A, Warshan D, Vasquez‐Mejia C, Andrésson ÓS. Environmental change alters nitrogen fixation rates and microbial parameters in a subarctic biological soil crust. OIKOS 2022. [DOI: 10.1111/oik.09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alejandro Salazar
- Faculty of Environmental and Forest Sciences, Agricultural Univ. of Iceland Reykjavik Iceland
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, Univ. of Iceland Reykjavik Iceland
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, Univ. of Iceland Reykjavik Iceland
| |
Collapse
|
7
|
Weber B, Belnap J, Büdel B, Antoninka AJ, Barger NN, Chaudhary VB, Darrouzet-Nardi A, Eldridge DJ, Faist AM, Ferrenberg S, Havrilla CA, Huber-Sannwald E, Malam Issa O, Maestre FT, Reed SC, Rodriguez-Caballero E, Tucker C, Young KE, Zhang Y, Zhao Y, Zhou X, Bowker MA. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol Rev Camb Philos Soc 2022; 97:1768-1785. [PMID: 35584903 PMCID: PMC9545944 DOI: 10.1111/brv.12862] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022]
Abstract
Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as ‘biocrust’, it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.
Collapse
Affiliation(s)
- Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria.,Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Jayne Belnap
- Southwest Biological Science Center, U.S. Geological Survey, 2290 S. Resource Blvd, Moab, UT, 84532, USA
| | - Burkhard Büdel
- Biology Institute, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Anita J Antoninka
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Box 15018, Flagstaff, AZ, 86011, USA
| | - Nichole N Barger
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Campus Box 334, Boulder, CO, 80309, USA
| | - V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, 6182 Steele Hall, 39 College Street, Hanover, NH, 03755, USA
| | - Anthony Darrouzet-Nardi
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Akasha M Faist
- Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3-I, Las Cruces, NM, 88003, USA
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - Caroline A Havrilla
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Colorado State University, Fort Collins, CO, 80521, USA
| | - Elisabeth Huber-Sannwald
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. 4ta Sección, CP 78216, San Luis Potosi, SLP, Mexico
| | - Oumarou Malam Issa
- Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), SU/IRD/CNRS/INRAE/UPEC, 32, Avenue Henry Varagnat, F-93143, Bondy Cedex, France
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain.,Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Sasha C Reed
- Southwest Biological Science Center, U.S. Geological Survey, 2290 S. Resource Blvd, Moab, UT, 84532, USA
| | - Emilio Rodriguez-Caballero
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany.,Department of Agronomy and Centro de Investigación de Colecciones Científicas (CECOUAL), Universidad de Almería, carretera Sacramento s/n, 04120, La cañada de San Urbano, Almeria, Spain
| | - Colin Tucker
- USDA Forest Service, Northern Research Station, 410 MacInnes Drive, Houghton, MI, 49931-1134, USA
| | - Kristina E Young
- Extension Agriculture and Natural Resources, Utah State University, 1850 S. Aggie Blvd, Moab, UT, 84532, USA
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Bejing Road, Urumqi City, 830011, Xinjiang, China
| | - Yunge Zhao
- Institute of Soil and Water Conservation, Northwest A & F University, 26 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Bejing Road, Urumqi City, 830011, Xinjiang, China
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Box 15018, Flagstaff, AZ, 86011, USA
| |
Collapse
|
8
|
Fernandes VMC, Rudgers JA, Collins SL, Garcia-Pichel F. Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology 2022; 103:e3744. [PMID: 35522227 DOI: 10.1002/ecy.3744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis-based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to twelve years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium, Microcoleus vaginatus, and enhanced nitrogen-fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vanessa M C Fernandes
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA
| |
Collapse
|
9
|
Gabay T, Rotem G, Gillor O, Ziv Y. Understanding changes in biocrust communities following phosphate mining in the Negev Desert. ENVIRONMENTAL RESEARCH 2022; 207:112200. [PMID: 34688640 DOI: 10.1016/j.envres.2021.112200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Biocrusts are key ecosystem engineers that are being destroyed due to anthropogenic disturbances such as trampling, agriculture and mining. In hyper-arid regions of the Negev Desert, phosphate has been mined for over six decades, altering the natural landscape over large spatial scales. In recent years, restoration-oriented practices were mandated in mining sites, however, the impact of such practices on the ecosystem, particularly the biocrust layer, has not been tested. Here, we evaluated post-mining biocrust bacterial communities and compared them to undisturbed (reference) biocrusts. We collected samples from four mining sites (each restored at a different year) and their corresponding reference sites. We hypothesized that post-mining bacterial communities would differ significantly from reference communities, given the slow regeneration of the biocrust. We also hypothesized that bacterial communities would vary among post-mining plots based on their restoration age. To test these hypotheses, we assessed the abundance and diversity of bacterial communities by sequencing the 16S rDNA and their photosynthetic potential by quantifying the abundance of cyanobacteria and chlorophyll a. The bacterial diversity was lower, and community composition differed significantly between post-mining and reference biocrusts. In addition, cyanobacteria abundances and chlorophyll a content were lower in post-mining biocrusts, indicating lower photosynthetic potential. However, no significant changes in bacterial communities were detected, regardless of the restoration age. We suggest that the practices implemented in the Negev mines may not support the recovery of the biocrust bacterial communities, particularly the cyanobacteria. Thus, active restoration measures are needed to accelerate the regeneration time of biocrusts at the hyper-arid Negev mines.
Collapse
Affiliation(s)
- Talia Gabay
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Israel; Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Israel
| | - Guy Rotem
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Israel.
| | - Yaron Ziv
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Israel.
| |
Collapse
|
10
|
Adelizzi R, O'Brien EA, Hoellrich M, Rudgers JA, Mann M, Fernandes VMC, Darrouzet-Nardi A, Stricker E. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance. Ecology 2022; 103:e3656. [PMID: 35132623 DOI: 10.1002/ecy.3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022]
Abstract
Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts ("biocrusts") occupy surface soils and house key autotrophic and diazotrophic bacteria, non-vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly in dry conditions from 2013-2019 in cyanobacteria-dominated biocrusts in Chihuahuan Desert grassland and shrubland ecosystems. After five years, disturbance decreased the abundances of cyanobacteria (especially Microcoleus steenstrupii clade) and N-fixers (Scytonema sp., and Schizothrix sp.) by >77% and chlorophyll a by up to 55%, but conversely, increased soil fungal abundance by 50% compared to controls. Responses of root-associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than control plots. Although disturbance did not affect 15 N tracer transfer from biocrusts to the dominant grass, Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N of B. eriopoda up to 16%, suggesting that although rapid N transfer during peak production was not affected by disturbance, over the long term, plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrate that disturbances to soil microbial communities have potential to cause substantial changes in N pools by reducing and reordering biocrust taxa.
Collapse
Affiliation(s)
- Rose Adelizzi
- Department of Biology, Washington College, 300 Washington Ave, Chestertown, Maryland, United States
| | - Elizabeth A O'Brien
- Department of Ecology and Evolutionary Biology, University of Michigan, 500 S State St, Ann Arbor, Michigan, United States
| | - Mikaela Hoellrich
- Department of Plant and Environmental Sciences, New Mexico State University, MSC 3Q, Las Cruces, New Mexico, United States
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Michael Mann
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Vanessa Moreira Camara Fernandes
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Anthony Darrouzet-Nardi
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas, United States
| | - Eva Stricker
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
11
|
Garby TJ, Jordan M, Timms V, Walter MR, Neilan BA. 2-Methylhopanoids in geographically distinct, arid biological soil crusts are primarily cyanobacterial in origin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:164-169. [PMID: 34898023 DOI: 10.1111/1758-2229.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microbial palaeontology is largely reliant on the interpretation of geologically stable biomarkers or molecular fossils. Biomolecules that are both specific to particular groups of organisms and stable on a geological scale are invaluable for tracing the emergence and diversification of lifeforms, particularly in cases where mineral fossils are lacking. 2-Methylhopanoids and their diagenic product, 2-methylhopanes, are highly abundant bacterial membrane lipids, recoverable from samples in excess of a billion years old. In this work we used degenerate PCR, targeting 2-methylhopanoid biosynthesis genes, and sequencing to show that the ability to produce these molecules in arid biological soil crusts from deserts in diverse geographical locations (Utah, USA, and the Pilbara, Australia) is largely confined to cyanobacteria. These data suggest that 2-methylhopanes can be used as a proxy for cyanobacterial presence within these environments, contributing to our understanding of the emergence of terrestrial life on Earth.
Collapse
Affiliation(s)
- Tamsyn J Garby
- Australian Centre for Astrobiology, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew Jordan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine Timms
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Malcolm R Walter
- Australian Centre for Astrobiology, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
12
|
You Y, Aho K, Lohse KA, Schwabedissen SG, Ledbetter RN, Magnuson TS. Biological Soil Crust Bacterial Communities Vary Along Climatic and Shrub Cover Gradients Within a Sagebrush Steppe Ecosystem. Front Microbiol 2021; 12:569791. [PMID: 34025590 PMCID: PMC8134670 DOI: 10.3389/fmicb.2021.569791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have examined bacterial communities in biological soil crusts (BSCs) associated with warm arid to semiarid ecosystems. Few, however, have examined bacterial communities in BSCs associated with cold steppe ecosystems, which often span a wide range of climate conditions and are sensitive to trends predicted by relevant climate models. Here, we utilized Illumina sequencing to examine BSC bacterial communities with respect to climatic gradients (elevation), land management practices (grazing vs. non-grazing), and shrub/intershrub patches in a cold sagebrush steppe ecosystem in southwestern Idaho, United States. Particular attention was paid to shifts in bacterial community structure and composition. BSC bacterial communities, including keystone N-fixing taxa, shifted dramatically with both elevation and shrub-canopy microclimates within elevational zones. BSC cover and BSC cyanobacteria abundance were much higher at lower elevation (warmer and drier) sites and in intershrub areas. Shrub-understory BSCs were significantly associated with several non-cyanobacteria diazotrophic genera, including Mesorhizobium and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. High elevation (wetter and colder) sites had distinct, highly diverse, but low-cover BSC communities that were significantly indicated by non-cyanobacterial diazotrophic taxa including families in the order Rhizobiales and the family Frankiaceae. Abiotic soil characteristics, especially pH and ammonium, varied with both elevation and shrub/intershrub level, and were strongly associated with BSC community composition. Functional inference using the PICRUSt pipeline identified shifts in putative N-fixing taxa with respect to both the elevational gradient and the presence/absence of shrub canopy cover. These results add to current understanding of biocrust microbial ecology in cold steppe, serving as a baseline for future mechanistic research.
Collapse
|
13
|
Steven B, Phillips ML, Belnap J, Gallegos-Graves LV, Kuske CR, Reed SC. Resistance, Resilience, and Recovery of Dryland Soil Bacterial Communities Across Multiple Disturbances. Front Microbiol 2021; 12:648455. [PMID: 33959111 PMCID: PMC8095321 DOI: 10.3389/fmicb.2021.648455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dryland ecosystems are sensitive to perturbations and generally slow to recover post disturbance. The microorganisms residing in dryland soils are especially important as they contribute to soil structure and nutrient cycling. Disturbance can have particularly strong effects on dryland soil structure and function, yet the natural resistance and recovery of the microbial components of dryland soils has not been well documented. In this study, the recovery of surface soil bacterial communities from multiple physical and environmental disturbances is assessed. Samples were collected from three field sites in the vicinity of Moab, UT, United States, 6 to 7 years after physical and climate disturbance manipulations had been terminated, allowing for the assessment of community recovery. Additionally, samples were collected in a transect that included three habitat patches: the canopy zone soils under the dominant shrubs, the interspace soils that are colonized by biological soil crusts, and edge soils at the plot borders. Field site and habitat patch were significant factors structuring the bacterial communities, illustrating that sites and habitats harbored unique soil microbiomes. Across the different sites and disturbance treatments, there was evidence of significant bacterial community recovery, as bacterial biomass and diversity were not significantly different than control plots. There was, however, a small number of 16S rRNA gene amplicon sequence variants that distinguished particular treatments, suggesting that legacy effects of the disturbances still remained. Taken together, these data suggest that dryland bacterial communities may possess a previously unappreciated potential to recover within years of the original disturbance.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Michala L Phillips
- United States Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Jayne Belnap
- United States Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | | | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Sasha C Reed
- United States Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| |
Collapse
|
14
|
Su Y, Liu J, Zhang Y, Huang G. More drought leads to a greater significance of biocrusts to soil multifunctionality. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yan‐gui Su
- Key Laboratory for Subtropical Mountain Ecology School of Geographical Sciences Fujian Normal University Fuzhou Fujian China
| | - Jie Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi Xinjiang China
| | - Yuan‐ming Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi Xinjiang China
| | - Gang Huang
- Key Laboratory for Subtropical Mountain Ecology School of Geographical Sciences Fujian Normal University Fuzhou Fujian China
| |
Collapse
|
15
|
Meier DV, Imminger S, Gillor O, Woebken D. Distribution of Mixotrophy and Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil Crust Community. mSystems 2021; 6:e00786-20. [PMID: 33436509 PMCID: PMC7901476 DOI: 10.1128/msystems.00786-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Desert surface soils devoid of plant cover are populated by a variety of microorganisms, many with yet unresolved physiologies and lifestyles. Nevertheless, a common feature vital for these microorganisms inhabiting arid soils is their ability to survive long drought periods and reactivate rapidly in rare incidents of rain. Chemolithotrophic processes such as oxidation of atmospheric hydrogen and carbon monoxide are suggested to be a widespread energy source to support dormancy and resuscitation in desert soil microorganisms. Here, we assessed the distribution of chemolithotrophic, phototrophic, and desiccation-related metabolic potential among microbial populations in arid biological soil crusts (BSCs) from the Negev Desert, Israel, via population-resolved metagenomic analysis. While the potential to utilize light and atmospheric hydrogen as additional energy sources was widespread, carbon monoxide oxidation was less common than expected. The ability to utilize continuously available energy sources might decrease the dependency of mixotrophic populations on organic storage compounds and carbon provided by the BSC-founding cyanobacteria. Several populations from five different phyla besides the cyanobacteria encoded CO2 fixation potential, indicating further potential independence from photoautotrophs. However, we also found population genomes with a strictly heterotrophic genetic repertoire. The highly abundant Rubrobacteraceae (Actinobacteriota) genomes showed particular specialization for this extreme habitat, different from their closest cultured relatives. Besides the ability to use light and hydrogen as energy sources, they encoded extensive O2 stress protection and unique DNA repair potential. The uncovered differences in metabolic potential between individual, co-occurring microbial populations enable predictions of their ecological niches and generation of hypotheses on the dynamics and interactions among them.IMPORTANCE This study represents a comprehensive community-wide genome-centered metagenome analysis of biological soil crust (BSC) communities in arid environments, providing insights into the distribution of genes encoding different energy generation mechanisms, as well as survival strategies, among populations in an arid soil ecosystem. It reveals the metabolic potential of several uncultured and previously unsequenced microbial genera, families, and orders, as well as differences in the metabolic potential between the most abundant BSC populations and their cultured relatives, highlighting once more the danger of inferring function on the basis of taxonomy. Assigning functional potential to individual populations allows for the generation of hypotheses on trophic interactions and activity patterns in arid soil microbial communities and represents the basis for future resuscitation and activity studies of the system, e.g., involving metatranscriptomics.
Collapse
Affiliation(s)
- Dimitri V Meier
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stefanie Imminger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Moreno-Jiménez E, Ochoa-Hueso R, Plaza C, Aceña-Heras S, Flagmeier M, Elouali FZ, Ochoa V, Gozalo B, Lázaro R, Maestre FT. Biocrusts buffer against the accumulation of soil metallic nutrients induced by warming and rainfall reduction. Commun Biol 2020; 3:325. [PMID: 32581276 PMCID: PMC7314843 DOI: 10.1038/s42003-020-1054-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
The availability of metallic nutrients in dryland soils, many of which are essential for the metabolism of soil organisms and vascular plants, may be altered due to climate change-driven increases in aridity. Biocrusts, soil surface communities dominated by lichens, bryophytes and cyanobacteria, are ecosystem engineers known to exert critical functions in dryland ecosystems. However, their role in regulating metallic nutrient availability under climate change is uncertain. Here, we evaluated whether well-developed biocrusts modulate metallic nutrient availability in response to 7 years of experimental warming and rainfall reduction in a Mediterranean dryland located in southeastern Spain. We found increases in the availability of K, Mg, Zn and Na under warming and rainfall exclusion. However, the presence of a well-developed biocrust cover buffered these effects, most likely because its constituents can uptake significant quantities of available metallic nutrients. Our findings suggest that biocrusts, a biotic community prevalent in drylands, exert an important role in preserving and protecting metallic nutrients in dryland soils from leaching and erosion. Therefore, we highlight the need to protect them to mitigate undesired effects of soil degradation driven by climate change in this globally expanding biome.
Collapse
Affiliation(s)
- Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115 bis, 28006, Madrid, Spain
| | - Sara Aceña-Heras
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Maren Flagmeier
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Biology (Botany), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Fatima Z Elouali
- Department of Agronomy, Faculty of Sciences of Nature and Life, University of Mascara, 29000, Mascara, Algeria
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig, s/n 03690, San Vicente del Raspeig, Alicante, Spain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig, s/n 03690, San Vicente del Raspeig, Alicante, Spain
| | - Roberto Lázaro
- Estación Experimental de Zonas Áridas Consejo Superior de Investigaciones Científicas, Carretera de Sacramento, s/n 04120La, Cañada de San Urbano, Almería, Spain
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig, s/n 03690, San Vicente del Raspeig, Alicante, Spain.,Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig, s/n 03690, San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
17
|
|
18
|
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. THE NEW PHYTOLOGIST 2019; 221:123-141. [PMID: 30047599 DOI: 10.1111/nph.15355] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Fernández-Valbuena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Steven B, Belnap J, Kuske CR. Chronic Physical Disturbance Substantially Alters the Response of Biological Soil Crusts to a Wetting Pulse, as Characterized by Metatranscriptomic Sequencing. Front Microbiol 2018; 9:2382. [PMID: 30349515 PMCID: PMC6186815 DOI: 10.3389/fmicb.2018.02382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Biological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 h) wetting pulse in both intact and soils disturbed by chronic foot trampling. Across the metatranscriptomes the majority of transcripts were cyanobacterial in origin, suggesting that cyanobacteria accounted for the bulk of the transcriptionally active cells. Chronic trampling substantially altered the functional profile of the metatranscriptomes, specifically resulting in a significant decrease in transcripts for nitrogen fixation. Soil depth (biocrust and below crust) was a relatively small factor in differentiating the metatranscriptomes, suggesting that the metabolically active bacteria were similar between shallow soil horizons. The dry samples were consistently enriched for hydrogenase genes, indicating that molecular hydrogen may serve as an energy source for the desiccated soil communities. The water pulse was associated with a restructuring of the metatranscriptome, particularly for the biocrusts. Biocrusts increased transcripts for photosynthesis and carbon fixation, suggesting a rapid resuscitation upon wetting. In contrast, the trampled surface soils showed a much smaller response to wetting, indicating that trampling altered the metabolic response of the community. Finally, several biogeochemical cycling genes in carbon and nitrogen cycling were assessed for their change in abundance due to wetting in the biocrusts. Different transcripts encoding the same gene product did not show a consensus response, with some more abundant in dry or wet biocrusts, highlighting the challenges in relating transcript abundance to biogeochemical cycling rates. These observations demonstrate that metatranscriptome sequencing was able to distinguish alterations in the function of arid soil microbial communities at two varying temporal scales, a long-term ecosystems disturbance through foot trampling, and a short term wetting pulse. Thus, community metatranscriptomes have the potential to inform studies on the response and resilience of biocrusts to various environmental perturbations.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jayne Belnap
- Southwest Biological Science Center, United States Geological Survey, Moab, UT, United States
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
20
|
Sauze J, Ogée J, Maron PA, Crouzet O, Nowak V, Wohl S, Kaisermann A, Jones SP, Wingate L. The interaction of soil phototrophs and fungi with pH and their impact on soil CO 2, CO 18O and OCS exchange. SOIL BIOLOGY & BIOCHEMISTRY 2017; 115:371-382. [PMID: 29200510 PMCID: PMC5666291 DOI: 10.1016/j.soilbio.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO2, OCS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and OCS.
Collapse
Affiliation(s)
- Joana Sauze
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Jérôme Ogée
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Olivier Crouzet
- INRA, UR 251 PESSAC, Centre Versailles-Grignon, RD 10, 78026 Versailles Cedex, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Steven Wohl
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | | | - Sam P. Jones
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Lisa Wingate
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| |
Collapse
|
21
|
Mogul R, Vaishampayan P, Bashir M, McKay CP, Schubert K, Bornaccorsi R, Gomez E, Tharayil S, Payton G, Capra J, Andaya J, Bacon L, Bargoma E, Black D, Boos K, Brant M, Chabot M, Chau D, Cisneros J, Chu G, Curnutt J, DiMizio J, Engelbrecht C, Gott C, Harnoto R, Hovanesian R, Johnson S, Lavergne B, Martinez G, Mans P, Morales E, Oei A, Peplow G, Piaget R, Ponce N, Renteria E, Rodriguez V, Rodriguez J, Santander M, Sarmiento K, Scheppelmann A, Schroter G, Sexton D, Stephenson J, Symer K, Russo-Tait T, Weigel B, Wilhelm MB. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert. Front Microbiol 2017; 8:1974. [PMID: 29109701 PMCID: PMC5660283 DOI: 10.3389/fmicb.2017.01974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439) and genus (p < 0.006) levels, including multiple biochemical and geochemical trends (p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.
Collapse
Affiliation(s)
- Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Parag Vaishampayan
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Mina Bashir
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Chris P McKay
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States
| | - Keith Schubert
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Department of Computer Science, Baylor University, Waco, TX, United States
| | - Rosalba Bornaccorsi
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,SETI Institute, Mountain View, CA, United States
| | - Ernesto Gomez
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Department of Computer Science, California State University, San Bernardino, San Bernardino, CA, United States
| | - Sneha Tharayil
- College of Education, University of Texas at Austin, Austin, TX, United States.,Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Geoffrey Payton
- Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Orchard Academies 2B: Arts and Media, Bell, CA, United States
| | - Juliana Capra
- Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Foothills Middle School, Arcadia, CA, United States
| | - Jessica Andaya
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Leonard Bacon
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Maple Hill High School, Castleton-on-Hudson, NY, United States
| | - Emily Bargoma
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - David Black
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,American Academy of Innovation, Jordan, UT, United States
| | - Katie Boos
- College of Education, University of Texas at Austin, Austin, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Michaela Brant
- College of Education, University of Texas at Austin, Austin, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Michael Chabot
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Danny Chau
- Orchard Academies 2B: Arts and Media, Bell, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jessica Cisneros
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Geoff Chu
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jane Curnutt
- Department of Computer Science, Baylor University, Waco, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jessica DiMizio
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Christian Engelbrecht
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Caroline Gott
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Raechel Harnoto
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Ruben Hovanesian
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Shane Johnson
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Britne Lavergne
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Gabriel Martinez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Paul Mans
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Ernesto Morales
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Alex Oei
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Gary Peplow
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Smiley Elementary School, Redlands, CA, United States
| | - Ryan Piaget
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Nicole Ponce
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Eduardo Renteria
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Veronica Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Joseph Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Monica Santander
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Khamille Sarmiento
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Allison Scheppelmann
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Gavin Schroter
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Devan Sexton
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jenin Stephenson
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Kristin Symer
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Tatiane Russo-Tait
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Bill Weigel
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Mary B Wilhelm
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| |
Collapse
|
22
|
Williams L, Jung P, Zheng LJ, Maier S, Peer T, Grube M, Weber B, Büdel B. Assessing recovery of biological soil crusts across a latitudinal gradient in Western Europe. Restor Ecol 2017. [DOI: 10.1111/rec.12579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laura Williams
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| | - Patrick Jung
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| | - Ling-Juan Zheng
- FB Organismische Biologie; University of Salzburg; Hellbrunnerstrasse 34, 5020 Salzburg Austria
| | - Stefanie Maier
- Institute of Plant Sciences; University of Graz; 8010 Graz Austria
- Multiphase Chemistry Department; Max Planck Institute for Chemistry; Hahn-Meitner-Weg 1, 55128 Mainz Germany
| | - Thomas Peer
- FB Organismische Biologie; University of Salzburg; Hellbrunnerstrasse 34, 5020 Salzburg Austria
| | - Martin Grube
- Institute of Plant Sciences; University of Graz; 8010 Graz Austria
| | - Bettina Weber
- Multiphase Chemistry Department; Max Planck Institute for Chemistry; Hahn-Meitner-Weg 1, 55128 Mainz Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| |
Collapse
|
23
|
Blay ES, Schwabedissen SG, Magnuson TS, Aho KA, Sheridan PP, Lohse KA. Variation in Biological Soil Crust Bacterial Abundance and Diversity as a Function of Climate in Cold Steppe Ecosystems in the Intermountain West, USA. MICROBIAL ECOLOGY 2017; 74:691-700. [PMID: 28409197 DOI: 10.1007/s00248-017-0981-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Biological soil crust (biocrust) is a composite of mosses, lichens, and bacteria that performs many important soil system functions, including increasing soil stability, protecting against wind erosion, reducing nutrient loss, and mediating carbon and nitrogen fixation cycles. These cold desert and steppe ecosystems are expected to experience directional changes in both climate and disturbance. These include increased temperatures, precipitation phase changes, and increased disturbance from anthropogenic land use. In this study, we assessed how climate and grazing disturbance may affect the abundance and diversity of bacteria in biocrusts in cold steppe ecosystems located in southwestern Idaho, USA. To our knowledge, our study is the first to document how biocrust bacterial composition and diversity change along a cold steppe climatic gradient. Analyses based on 16S small subunit ribosomal RNA gene sequences identified the phylum Actinobacteria as the major bacterial component within study site biocrusts (relative abundance = 36-51%). The abundance of the phyla Actinobacteria and Firmicutes was higher at elevations experiencing cooler, wetter climates, while the abundance of Cyanobacteria, Proteobacteria, and Chloroflexi decreased. The abundance of the phyla Cyanobacteria and Proteobacteria showed no significant evidence of decline in grazed areas. Taken together, results from this study indicate that bacterial communities from rolling biocrusts found in cold steppe ecosystems are affected by climate regime and differ substantially from other cold desert ecosystems, resulting in potential differences in nutrient cycling and ecosystem dynamics.
Collapse
Affiliation(s)
- Erika S Blay
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA
| | - Stacy G Schwabedissen
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA
| | - Timothy S Magnuson
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA
| | - Ken A Aho
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA
| | - Peter P Sheridan
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA
| | - Kathleen A Lohse
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID, USA.
| |
Collapse
|
24
|
Ouyang H, Hu C. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water. Sci Rep 2017; 7:2573. [PMID: 28566698 PMCID: PMC5451392 DOI: 10.1038/s41598-017-02812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Biocrusts are model ecosystems of global change studies. However, light and non-rainfall water (NRW) were previously few considered. Different biocrust types further aggravated the inconsistence. So carbon-exchange of biocrusts (cyanobacteria crusts-AC1/AC2; cyanolichen crust-LC1; chlorolichen crust-LC2; moss crust-MC) utilizing NRW at various temperatures and light-intensities were determined under simulated and insitu mesocosm experiments. Carbon input of all biocrusts were negatively correlated with experimental temperature under all light-intensity with saturated water and stronger light with equivalent NRW, but positively correlated with temperature under weak light with equivalent NRW. LCPs and R/Pg of AC1 were lowest, followed in turn by AC2, LC2 and MC. Thus AC1 had most opportunities to use NRW, and 2.5 °C warming did cause significant changes of carbon exchange. Structural equation models further revealed that air-temperature was most important for carbon-exchange of ACs, but equally important as NRW for LC2 and MC; positive influence of warming on carbon-input in ACs was much stronger than the latter. Therefore, temperature effect on biocrust carbon-input depends on both moisture and light. Meanwhile, the role of NRW, transitional states between ACs, and obvious carbon-fixation differences between lichen crusts should be fully considered in the future study of biocrusts responding to climate change.
Collapse
Affiliation(s)
- Hailong Ouyang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
25
|
Aslam SN, Dumbrell AJ, Sabir JS, Mutwakil MHZ, Baeshen MMN, Abo-Aba SEM, Clark DR, Yates SA, Baeshen NA, Underwood GJC, McGenity TJ. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota. Environ Microbiol 2016; 18:5048-5062. [PMID: 27459511 DOI: 10.1111/1462-2920.13474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water.
Collapse
Affiliation(s)
- Shazia N Aslam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Alex J Dumbrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Jamal S Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed H Z Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed M N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Salah E M Abo-Aba
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Dave R Clark
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Steven A Yates
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Graham J C Underwood
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
26
|
Biocrusts in the Context of Global Change. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_22] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|