1
|
Venios X, Gkizi D, Nisiotou A, Korkas E, Tjamos SE, Zamioudis C, Banilas G. Emerging Roles of Epigenetics in Grapevine and Winegrowing. PLANTS (BASEL, SWITZERLAND) 2024; 13:515. [PMID: 38498480 PMCID: PMC10893341 DOI: 10.3390/plants13040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype-environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine.
Collapse
Affiliation(s)
- Xenophon Venios
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece;
| | - Elias Korkas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Christos Zamioudis
- Department of Agricultural Development, Democritus University of Thrace, Pantazidou 193, 68200 Orestiada, Greece;
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| |
Collapse
|
2
|
Sato G, Kuroda K. Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, Epigenome, and Mitochondrial Editing. Microorganisms 2023; 11:microorganisms11041040. [PMID: 37110464 PMCID: PMC10145089 DOI: 10.3390/microorganisms11041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Modification of the genome of the yeast Saccharomyces cerevisiae has great potential for application in biological research and biotechnological advancements, and the CRISPR-Cas9 system has been increasingly employed for these purposes. The CRISPR-Cas9 system enables the precise and simultaneous modification of any genomic region of the yeast to a desired sequence by altering only a 20-nucleotide sequence within the guide RNA expression constructs. However, the conventional CRISPR-Cas9 system has several limitations. In this review, we describe the methods that were developed to overcome these limitations using yeast cells. We focus on three types of developments: reducing the frequency of unintended editing to both non-target and target sequences in the genome, inducing desired changes in the epigenetic state of the target region, and challenging the expansion of the CRISPR-Cas9 system to edit genomes within intracellular organelles such as mitochondria. These developments using yeast cells to overcome the limitations of the CRISPR-Cas9 system are a key factor driving the advancement of the field of genome editing.
Collapse
Affiliation(s)
- Genki Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|