1
|
Caty SN, Alvarez-Buylla A, Vasek C, Tapia EE, Martin NA, McLaughlin T, Golde CL, Weber PK, Mayali X, Coloma LA, Morris MM, O'Connell LA. Alkaloids are associated with increased microbial diversity and metabolic function in poison frogs. Curr Biol 2025; 35:187-197.e8. [PMID: 39637856 DOI: 10.1016/j.cub.2024.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Shifts in host-associated microbiomes can impact both host and microbes.1,2,3,4,5,6 It is of interest to understand how perturbations, like the introduction of exogenous chemicals,7,8,9,10,11,12,13 impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.14,15,16,17,18,19 These alkaloids are antimicrobial20,21,22; however, their effect on the frogs' skin microbiome is unknown. To test this, we characterized microbial communities from field-collected dendrobatid frogs. Then, we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of two frog species with contrasting alkaloid loads in nature. In both datasets, we found that alkaloid-exposed microbiomes were more phylogenetically diverse, with an increase in diversity among rare taxa. To better understand the isolate-specific response to alkaloids, we cultured microbial isolates from poison frog skin and found that many isolates exhibited enhanced growth or were not impacted by the addition of DHQ. To further explore the microbial response to alkaloids, we sequenced the metagenomes from high- and low-alkaloid frogs and observed a greater diversity of genes associated with nitrogen and carbon metabolism in high-alkaloid frogs. From these data, we hypothesized that some strains may metabolize the alkaloids. We used stable isotope tracing coupled to nanoSIMS (nanoscale secondary ion mass spectrometry), which supported the idea that some of these isolates are able to metabolize DHQ. Together, these data suggest that poison frog alkaloids open new niches for skin-associated microbes with specific adaptations, such as alkaloid metabolism, that enable survival in this environment.
Collapse
Affiliation(s)
- Stephanie N Caty
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | | - Cooper Vasek
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elicio E Tapia
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| | - Nora A Martin
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Theresa McLaughlin
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Chloe L Golde
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito 170810, Ecuador
| | - Megan M Morris
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Liu Y, Gates AD, Liu Z, Duque Q, Chen MY, Hamilton CD, O’Toole GA, Haney CH. In vitro biofilm formation only partially predicts beneficial Pseudomonas fluorescens protection against rhizosphere pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628960. [PMID: 39763852 PMCID: PMC11702707 DOI: 10.1101/2024.12.17.628960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Plant roots form associations with both beneficial and pathogenic soil microorganisms. While members of the rhizosphere microbiome can protect against pathogens, the mechanisms are poorly understood. We hypothesized that the ability to form a robust biofilm on the root surface is necessary for the exclusion of pathogens; however, it is not known if the same biofilm formation components required in vitro are necessary in vivo. Pseudomonas fluorescens WCS365 is a beneficial strain that is phylogenetically closely related to an opportunistic pathogen P. fluorescens N2C3 and confers robust protection against P. fluorescens N2C3 in the rhizosphere. We used this plant-mutualist-pathogen model to screen collections of P. fluorescens WCS365 increased attachment mutants (iam) and surface attachment defective (sad) transposon insertion mutants that form increased or decreased levels of biofilm on an abiotic surface, respectively. We found that while the P. fluorescens WCS365 mutants had altered biofilm formation in vitro, only a subset of these mutants, including those involved in large adhesion protein (Lap) biosynthesis, flagellin biosynthesis and O-antigen biosynthesis, lost protection against P. fluorescens N2C3. We found that the inability of P. fluorescens WCS365 mutants to grow in planta, and the inability to suppress pathogen growth, both partially contributed to loss of plant protection. We did not find a correlation between the extent of biofilm formed in vitro and pathogen protection in planta indicating that biofilm formation on abiotic surfaces may not fully predict pathogen exclusion in planta. Collectively, our work provides insights into mechanisms of biofilm formation and host colonization that shape the outcomes of host-microbe-pathogen interactions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Alexandra D. Gates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Quinn Duque
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Melissa Y. Chen
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Corri D. Hamilton
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - George A. O’Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
3
|
Swiontek Brzezinska M, Shinde AH, Kaczmarek-Szczepańska B, Jankiewicz U, Urbaniak J, Boczkowski S, Zasada L, Ciesielska M, Dembińska K, Pałubicka K, Michalska-Sionkowska M. Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil. Polymers (Basel) 2024; 16:574. [PMID: 38475259 DOI: 10.3390/polym16050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Ambika H Shinde
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Urbaniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Sławomir Boczkowski
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Magdalena Ciesielska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Krystyna Pałubicka
- Department of Conservation and Restoration of Paper and Leather, Nicolaus Copernicus University, ul. Sienkiewicza 30/32, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Sentenac H, Schmeller DS, Caubet S, Carsin A, Guillet R, Ferriol J, Leflaive J, Loyau A. Biofilms inactivate the free-living stage of Batrachochytrium dendrobatidis, the most destructive pathogen for vertebrate diversity. THE ISME JOURNAL 2024; 18:wrae189. [PMID: 39325976 PMCID: PMC11630259 DOI: 10.1093/ismejo/wrae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Emerging infectious diseases threaten biodiversity and human health. Many emerging pathogens have aquatic life stages and all immersed substrates have biofilms on their surface, i.e. communities of microorganisms producing a gelatinous matrix. However, the outcome of the interactions between environmental biofilms and pathogens is poorly understood. Here, we demonstrate that biofilms reduce the survival of the most impactful pathogen for vertebrate diversity, the invasive chytrid fungus Batrachochytrium dendrobatidis. Effects on its zoospores varied with biofilm composition in controlled settings and biofilm compositional variation also coincided with divergent impacts of chytridiomycosis on amphibian populations in nature. Our results suggest that biofilms form a biotic component of ecosystem resistance to Batrachochytrium dendrobatidis by reducing environmental transmission, and that they could be used to develop nature-based technologies to limit the impacts and spread of this invasive chytrid fungus. Our study warrants further research into the interactions between environmental biofilms and pathogenic and/or invasive micro-organisms.
Collapse
Affiliation(s)
- Hugo Sentenac
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
- Centre de Biologie pour la Gestion des Populations (CBGP), Université de Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, IRD, Avenue du Campus Agropolis, Montferrier-sur-Lez 34980, France
- Chrono-Environnement UMR 6249 CNRS/Université de Franche-Comté (UFC), 16 Route de Gray, Besançon 25000, France
| | - Dirk S Schmeller
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Solène Caubet
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Adélaïde Carsin
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Rémi Guillet
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Jessica Ferriol
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Joséphine Leflaive
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| | - Adeline Loyau
- Centre de Recherche sur la Biodiversité et l’Environnement (Unité Mixte de Recherche UMR 5300), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Developpement (IRD), Institut National Polytechnique de Toulouse (INPT), Université Toulouse 3—Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex 31062, France
| |
Collapse
|
5
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Rebollar EA. Gene functions of the Ambystoma altamirani skin microbiome vary across space and time but potential antifungal genes are widespread and prevalent. Microb Genom 2024; 10:001181. [PMID: 38240649 PMCID: PMC10868611 DOI: 10.1099/mgen.0.001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Amphibian skin microbiomes can play a critical role in host survival against emerging diseases by protecting their host against pathogens. While a plethora of biotic and abiotic factors have been shown to influence the taxonomic diversity of amphibian skin microbiomes it remains unclear whether functional genomic diversity varies in response to temporal and environmental factors. Here we applied a metagenomic approach to evaluate whether seasonality, distinct elevations/sites, and pathogen presence influenced the functional genomic diversity of the A. altamirani skin microbiome. We obtained a gene catalogue of 92 107 nonredundant annotated genes and a set of 50 unique metagenome assembled genomes (MAGs). Our analysis showed that genes linked to general and potential antifungal traits significantly differed across seasons and sampling locations at different elevations. Moreover, we found that the functional genomic diversity of A. altamirani skin microbiome differed between B. dendrobatidis infected and not infected axolotls only during winter, suggesting an interaction between seasonality and pathogen infection. In addition, we identified the presence of genes and biosynthetic gene clusters (BGCs) linked to potential antifungal functions such as biofilm formation, quorum sensing, secretion systems, secondary metabolite biosynthesis, and chitin degradation. Interestingly genes linked to these potential antifungal traits were mainly identified in Burkholderiales and Chitinophagales MAGs. Overall, our results identified functional traits linked to potential antifungal functions in the A. altamirani skin microbiome regardless of variation in the functional diversity across seasons, elevations/sites, and pathogen presence. Our findings suggest that potential antifungal traits found in Burkholderiales and Chitinophagales taxa could be related to the capacity of A. altamirani to survive in the presence of Bd, although further experimental analyses are required to test this hypothesis.
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Alexiev A, Melie T, Martindale R, Delacey C, Quandt CA, McKenzie VJ. Mr. Toad's Wild Fungi: Fungal Isolate Diversity on Colorado Boreal Toads and their Capacity for Pathogen Inhibition. FUNGAL ECOL 2023; 66:101297. [PMID: 38487623 PMCID: PMC10938945 DOI: 10.1016/j.funeco.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The amphibian skin pathogen Batrachochytrium dendrobatidis (Bd) has caused an ongoing biodiversity crisis, including in the locally endangered Colorado boreal toad (Anaxyrus boreas boreas). Although researchers have investigated the bacteria living on amphibian skin and how they interact with Bd, there is less information about fungal community members. This study describes (1) the diversity of culturable fungi from boreal toad skin, (2) which subset of these isolates is Bd-inhibitory, and (3) how Bd affects these isolates' growth and morphology. Most isolates were from the orders Capnodiales, Helotiales, and Pleosporales. Of 16 isolates tested for Bd-inhibition, two from the genus Neobulgaria and three from Pseudeurotium inhibited Bd. Fungal growth in co-culture with Bd varied with weak statistical support for Neobulgaria sp. (isolate BTF_36) and cf Psychrophila (isolate BTF_60) (p-values = 0.076 and 0.092, respectively). Fungal morphology remained unchanged in co-culture with Bd, however, these results could be attributed to low replication per isolate. Nonetheless, two fungal isolates' growth may have been affected by Bd, implying that fungal growth changes in Bd co-culture could be a variable worth measuring in the future (with higher replication). These findings add to the sparse but growing literature on amphibian-associated fungi and suggest further study may uncover the relevance of fungi to amphibian health and Bd infection.
Collapse
Affiliation(s)
- Alexandra Alexiev
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| | - Tina Melie
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| | - Rachel Martindale
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| | - Cameron Delacey
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| | - C. Alisha Quandt
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| | - Valerie J. McKenzie
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology
| |
Collapse
|
7
|
Jiang A, Patel R, Padhan B, Palimkar S, Galgali P, Adhikari A, Varga I, Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel) 2023; 15:polym15102235. [PMID: 37242810 DOI: 10.3390/polym15102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials.
Collapse
Affiliation(s)
- Andre Jiang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | | | - Padmaja Galgali
- Aadarsh Innovations, Balewadi, Pune 411045, Maharashtra, India
| | | | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Morales Moreira ZP, Chen MY, Yanez Ortuno DL, Haney CH. Engineering plant microbiomes by integrating eco-evolutionary principles into current strategies. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102316. [PMID: 36442442 DOI: 10.1016/j.pbi.2022.102316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Engineering plant microbiomes has the potential to improve plant health in a rapid and sustainable way. Rapidly changing climates and relatively long timelines for plant breeding make microbiome engineering an appealing approach to improving food security. However, approaches that have shown promise in the lab have not resulted in wide-scale implementation in the field. Here, we suggest the use of an integrated approach, combining mechanistic molecular and genetic knowledge, with ecological and evolutionary theory, to target knowledge gaps in plant microbiome engineering that may facilitate translatability of approaches into the field. We highlight examples where understanding microbial community ecology is essential for a holistic understanding of the efficacy and consequences of microbiome engineering. We also review examples where understanding plant-microbe evolution could facilitate the design of plants able to recruit specific microbial communities. Finally, we discuss possible trade-offs in plant-microbiome interactions that should be considered during microbiome engineering efforts so as not to introduce off-target negative effects. We include classic and emergent approaches, ranging from microbial inoculants to plant breeding to host-driven microbiome engineering, and address areas that would benefit from multidisciplinary approaches.
Collapse
Affiliation(s)
- Zayda P Morales Moreira
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Melissa Y Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniela L Yanez Ortuno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Alexiev A, Chen MY, Korpita T, Weier AM, McKenzie VJ. Together or Alone: Evaluating the Pathogen Inhibition Potential of Bacterial Cocktails against an Amphibian Pathogen. Microbiol Spectr 2023; 11:e0151822. [PMID: 36719234 PMCID: PMC10100949 DOI: 10.1128/spectrum.01518-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/11/2022] [Indexed: 02/01/2023] Open
Abstract
The amphibian fungal skin disease Batrachochytrium dendrobatidis (Bd) has caused major biodiversity losses globally. Several experimental trials have tested the use of Janthinobacterium lividum to reduce mortality due to Bd infections, usually in single-strain amendments. It is well-characterized in terms of its anti-Bd activity mechanisms. However, there are many other microbes that inhibit Bd in vitro, and not all experiments have demonstrated consistent results with J. lividum. We used a series of in vitro assays involving bacterial coculture with Bd lawns, bacterial growth tests in liquid broth, and Bd grown in bacterial cell-free supernatant (CFS) to determine: (i) which skin bacteria isolated from a locally endangered amphibian, namely, the Colorado boreal toad (Anaxyrus boreas boreas), are able to inhibit Bd growth; (ii) whether multistrain combinations are more effective than single-strains; and (iii) the mechanism behind microbe-microbe interactions. Our results indicate that there are some single strain and multistrain probiotics (especially including strains from Pseudomonas, Chryseobacterium, and Microbacterium) that are potentially more Bd-inhibitive than is J. lividum alone and that some combinations may lead to a loss of inhibition, potentially through antagonistic metabolite effects. Additionally, if J. lividum continues being developed as a wild boreal toad probiotic, we should investigate it in combination with Curvibacter CW54D, as they inhibited Bd additively and grew at a higher rate when combined than did either alone. This highlights the fact that combinations of probiotics function in variable and unpredictable ways as well as the importance of considering the potential for interactions among naturally resident host microbiota and probiotic additions. IMPORTANCE Batrachochytrium dendrobatidis (Bd) is a pathogen that infects amphibians globally and is causing a biodiversity crisis. Our research group studies one of the species affected by Bd, namely, the Colorado boreal toad (Anaxyrus boreas boreas). Many researchers focus their studies on one probiotic bacterial isolate called Janthinobacterium lividum, which slows Bd growth in lab cultures and is currently being field tested in Colorado boreal toads. Although promising, J. lividum is not consistently effective across all amphibian individuals or species. For Colorado boreal toads, we addressed whether there are other bacterial strains that also inhibit Bd (potentially better than does J. lividum) and whether we can create two-strain probiotics that function better than do single-strain probiotics. In addition, we evaluate which types of interactions occur between two-strain combinations and what these results mean in the context of adding a probiotic to an existing amphibian skin microbiome.
Collapse
Affiliation(s)
- Alexandra Alexiev
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Melissa Y. Chen
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Timothy Korpita
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Andrew M. Weier
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Valerie J. McKenzie
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
10
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Vázquez Trejo M, Zavala Hernández D, Anaya-Morales SL, Rebollar EA. The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. Anim Microbiome 2022; 4:63. [PMID: 36503640 PMCID: PMC9743558 DOI: 10.1186/s42523-022-00215-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microbiomes have been increasingly recognized as major contributors to host health and survival. In amphibians, bacterial members of the skin microbiota protect their hosts by inhibiting the growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Even though several studies describe the influence of biotic and abiotic factors over the skin microbiota, it remains unclear how these symbiotic bacterial communities vary across time and development. This is particularly relevant for species that undergo metamorphosis as it has been shown that host physiology and ecology drastically influence diversity of the skin microbiome. RESULTS We found that the skin bacterial communities of the axolotl A. altamirani are largely influenced by the metamorphic status of the host and by seasonal variation of abiotic factors such as temperature, pH, dissolved oxygen and conductivity. Despite high Bd prevalence in these samples, the bacterial diversity of the skin microbiota did not differ between infected and non-infected axolotls, although relative abundance of particular bacteria were correlated with Bd infection intensity. CONCLUSIONS Our work shows that metamorphosis is a crucial process that shapes skin bacterial communities and that axolotls under different developmental stages respond differently to environmental seasonal variations. Moreover, this study greatly contributes to a better understanding of the factors that shape amphibian skin microbiota, especially in a largely underexplored group like axolotls (Mexican Ambystoma species).
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | | | - Sara Lucia Anaya-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|