1
|
Yang D, Liu X, Ma J, Cui B, Wang Y, Xu J, Zhang Y, Ding H, Wang D, Liu Q, Zhang F. Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging. ACS NANO 2025. [PMID: 39788128 DOI: 10.1021/acsnano.4c14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Single cell adhesion plays a significant role in numerous physiological and pathological processes. Real-time imaging and quantification of single cell adhesion kinetics and corresponding cell-substrate mechanical interaction forces are crucial for elucidating the cellular mechanisms involved in tissue formation, immune responses, and cancer metastasis. Here, we present the development of a plasmonic-based nanomechanical sensing and imaging system (PNMSi) for the real-time measurement of single cell adhesion kinetics and associated nanomechanical forces with plasmonic tracking and monitoring of cell-substrate interactions and the accompanying nanoscale fluctuations. Both the slow binding and dynamic nanomechanical interaction processes were tracked and analyzed with a thermodynamic model to determine the adhesion kinetic parameters and quantity the mechanical forces. To demonstrate the capabilities of the PNMSi platform, we examined single cell binding interactions across four different surface modifications, and obvious alterations in binding kinetics and corresponding nanomechanical forces were observed, influenced by surface charges and interfacial hydrophilicity. Additionally, we investigated changes in mechanical interaction forces of single cells during cytoskeleton modification, revealing the cross-linking-induced cell adhesion changes. Furthermore, to demonstrate the application capability of the system, the adhesion profiling of primary tumor and metastatic tumor cells was explored, and obvious alterations were observed in the kinetic forces of single cell-substrate interaction. The PNMSi platform facilitates high-throughput single cell adhesion imaging and the quantification of adhesion interaction kinetics and nanomechanical forces with high sensitivity and serves as a promising platform for identifying biomarkers for tumor metastasis and for screening potential therapeutic agents.
Collapse
Affiliation(s)
- Dehong Yang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaoyin Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jinbiao Ma
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Baiqi Cui
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yunxiao Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiahao Xu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yunrui Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haiying Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Di Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311100, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
2
|
Yang D, Fang Y, Liu X, Ma J, Xu J, Dong H, Ding H, Wang D, Liu Q, Zhang F. Lensless On-Chip Chemiluminescence Imaging for High-Throughput Single-Cell Heterogeneity Analysis. NANO LETTERS 2024; 24:14875-14883. [PMID: 39512117 DOI: 10.1021/acs.nanolett.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High-throughput single-cell heterogeneity imaging and analysis is essential for understanding complex biological systems and for advancing personalized precision disease diagnosis and treatment. Here, we present a miniaturized lensless chemiluminescence chip for high-throughput single-cell functional imaging with subcellular resolution. With the sensitive chemiluminescence sensing and wide field of view of contact lensless imaging, we demonstrated the chemiluminescent imaging of over 1000 single cells, and their membrane glycoprotein and the high-throughput single-cell heterogeneity of membrane protein imaging were examined for precision analysis. Furthermore, the functional adhesion and heterogeneity of single live cells were imaged and explored. This miniaturized lensless on-chip CL-CMOS imaging platform enables high-throughput single-cell imaging and analysis with high sensitivity and subcellular resolution, providing new techniques for the cellular study of biological heterogeneity and has potential application in precision disease diagnosis and treatment at the point-of-care settings.
Collapse
Affiliation(s)
- Dehong Yang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Fang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyin Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinbiao Ma
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Xu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Haiying Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310005, China
| | - Di Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Liu YN, Liu XW. Nanoscale Spatiotemporal Dynamics of Microbial Adhesion: Unveiling Stepwise Transitions with Plasmonic Imaging. ACS NANO 2024; 18:16002-16010. [PMID: 38837910 DOI: 10.1021/acsnano.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
5
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
6
|
Xu J, Zhang P, Chen Y. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. BIOSENSORS 2024; 14:84. [PMID: 38392003 PMCID: PMC10886473 DOI: 10.3390/bios14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Surface plasmon resonance (SPR) is a powerful tool for determining molecular interactions quantitatively. SPR imaging (SPRi) further improves the throughput of SPR technology and provides the spatially resolved capability for observing the molecular interaction dynamics in detail. SPRi is becoming more and more popular in biological and chemical sensing and imaging. However, SPRi suffers from low spatial resolution due to the imperfect optical components and delocalized features of propagating surface plasmonic waves along the surface. Diverse kinds of approaches have been developed to improve the spatial resolution of SPRi, which have enormously impelled the development of the methodology and further extended its possible applications. In this minireview, we introduce the mechanisms for building a high-spatial-resolution SPRi system and present its experimental schemes from prism-coupled SPRi and SPR microscopy (SPRM) to surface plasmonic scattering microscopy (SPSM); summarize its exciting applications, including molecular interaction analysis, molecular imaging and profiling, tracking of single entities, and analysis of single cells; and discuss its challenges in recent decade as well as the promising future.
Collapse
Affiliation(s)
- Jiying Xu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
8
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|