1
|
Mickoleit F, Beierl JJ, Markert S, Klein MA, Stäbler SY, Maier DS, Schüler D. A Versatile Magnetic Nanoplatform for Plug-and-Play Functionalization: Genetically Programmable Cargo Loading to Bacterial Magnetosomes by SpyCatcher "Click Biology". ACS NANO 2024; 18:27974-27987. [PMID: 39365667 DOI: 10.1021/acsnano.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Bacterial magnetosomes ("MAGs") represent a promising class of magnetic iron oxide nanoparticles with exceptional material characteristics and high application potential in the biomedical and biotechnological field. For the surface functionalization of MAGs with different protein cargos, their enveloping membrane can be addressed by genetic means. However, the expression of foreign polypeptides as translational fusion to magnetosome membrane proteins is still laborious and lacks versatility as the generated particles are monospecific and thus restricted to predetermined functions. Utilizing the SpyTag-SpyCatcher (ST-SC) bioconjugate system, we here establish a flexible platform for the targeted nanoassembly of multifunctional MAGs that combines the rapidity of chemical coupling (e.g., by cross-linking reactions) and the unmatched selectivity and controllability of in vivo functionalization. MAGs genetically engineered to display either SC- or ST-connectors are shown to efficiently bind a variety of complementary tagged (protein) cargo. Specifically, we cover a broad spectrum of representative functional moieties and foreign cargo (such as enzymes, antibodies, fluorophores, and silica beads) with relevance in biotechnology and biomedicine and demonstrate the interchangeability of the MAGs-adapted ST-SC system. For the controlled generation of artificial shells surrounding the particles, SC-MAGs are effectively coated by protein-corona proteins. The potential of the here-provided toolkit is even more enhanced by using SC-MAGs as an affinity tool for selective protein pulldown in vitro and in vivo. Overall, this innovative technology turns bacterial MAGs into a flexible magnetic nanoscaffold for the targeted plug-and-play display of virtually unlimited additional functionalities, thereby generating a multitude of magnetic hybrid materials that can be used in many applications.
Collapse
Affiliation(s)
- Frank Mickoleit
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Jakob J Beierl
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Simon Markert
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Marius A Klein
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Sabrina Y Stäbler
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Denis S Maier
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Dirk Schüler
- Dept. Microbiology, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
2
|
Wu S, Tian J, Xue X, Ma F, Li QX, Morisseau C, Hammock BD, Xu T. Biosynthesis of magnetosome-nanobody complex in Magnetospirillum gryphiswaldense MSR-1 and a magnetosome-nanobody-based enzyme-linked immunosorbent assay for the detection of tetrabromobisphenol A in water. Anal Bioanal Chem 2024; 416:141-149. [PMID: 37934249 PMCID: PMC10829939 DOI: 10.1007/s00216-023-05005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.
Collapse
Affiliation(s)
- Sha Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Suzhou Vicheck Biotechnology Co. Ltd., Suzhou, 215128, China
| | - Jiesheng Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianle Xue
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Suzhou Vicheck Biotechnology Co. Ltd., Suzhou, 215128, China
| | - Fengfei Ma
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Suzhou Vicheck Biotechnology Co. Ltd., Suzhou, 215128, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Christophe Morisseau
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Suzhou Vicheck Biotechnology Co. Ltd., Suzhou, 215128, China.
| |
Collapse
|
3
|
Localization of Native Mms13 to the Magnetosome Chain of Magnetospirillum magneticum AMB-1 Using Immunogold Electron Microscopy, Immunofluorescence Microscopy and Biochemical Analysis. CRYSTALS 2021. [DOI: 10.3390/cryst11080874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated that Mms13 is a critical protein within the MM. Mms13 can be isolated from the MM fraction of Magnetospirillum magneticum AMB-1 and a Mms13 homolog, MamC, has been shown to control the size and shape of magnetite nanocrystals synthesized in-vitro. The objective of this study was to use several independent methods to definitively determine the localization of native Mms13 in M. magneticum AMB-1. Using Mms13-immunogold labeling and transmission electron microscopy (TEM), we found that Mms13 is localized to the magnetosome chain of M. magneticum AMB-1 cells. Mms13 was detected in direct contact with magnetite crystals or within the MM. Immunofluorescence detection of Mms13 in M. magneticum AMB-1 cells by confocal laser scanning microscopy (CLSM) showed Mms13 localization along the length of the magnetosome chain. Proteins contained within the MM were resolved by SDS-PAGE for Western blot analysis and LC-MS/MS (liquid chromatography with tandem mass spectrometry) protein sequencing. Using Anti-Mms13 antibody, a protein band with a molecular mass of ~14 kDa was detected in the MM fraction only. This polypeptide was digested with trypsin, sequenced by LC-MS/MS and identified as magnetosome protein Mms13. Peptides corresponding to the protein’s putative MM domain and catalytic domain were both identified by LC-MS/MS. Our results (Immunogold TEM, Immunofluorescence CLSM, Western blot, LC-MS/MS), combined with results from previous studies, demonstrate that Mms13 and homolog proteins MamC and Mam12, are localized to the magnetosome chain in MTB belonging to the class Alphaproteobacteria. Because of their shared localization in the MM and highly conserved amino acid sequences, it is likely that MamC, Mam12, and Mms13 share similar roles in the biomineralization of Fe3O4 nanocrystals.
Collapse
|
4
|
Mickoleit F, Lanzloth C, Schüler D. A Versatile Toolkit for Controllable and Highly Selective Multifunctionalization of Bacterial Magnetic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906922. [PMID: 32187836 DOI: 10.1002/smll.201906922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Their unique material characteristics, i.e. high crystallinity, strong magnetization, uniform shape and size, and the ability to engineer the enveloping membrane in vivo make bacterial magnetosomes highly interesting for many biomedical and biotechnological applications. In this study, a versatile toolkit is developed for the multifunctionalization of magnetic nanoparticles in the magnetotactic bacterium Magnetospirillum gryphiswaldense, and the use of several abundant magnetosome membrane proteins as anchors for functional moieties is explored. High-level magnetosome display of cargo proteins enables the generation of engineered nanoparticles with several genetically encoded functionalities, including a core-shell structure, magnetization, two different catalytic activities, fluorescence and the presence of a versatile connector that allows the incorporation into a hydrogel-based matrix by specific coupling reactions. The resulting reusable magnetic composite demonstrates the high potential of synthetic biology for the production of multifunctional nanomaterials, turning the magnetosome surface into a platform for specific versatile display of functional moieties.
Collapse
Affiliation(s)
- Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| | - Clarissa Lanzloth
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| |
Collapse
|
5
|
Mickoleit F, Schüler D. Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Gilbert C, Ellis T. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties. ACS Synth Biol 2019; 8:1-15. [PMID: 30576101 DOI: 10.1021/acssynbio.8b00423] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural biological materials exhibit remarkable properties: self-assembly from simple raw materials, precise control of morphology, diverse physical and chemical properties, self-repair, and the ability to sense-and-respond to environmental stimuli. Despite having found numerous uses in human industry and society, the utility of natural biological materials is limited. But, could it be possible to genetically program microbes to create entirely new and useful biological materials? At the intersection between microbiology, material science, and synthetic biology, the emerging field of biological engineered living materials (ELMs) aims to answer this question. Here we review recent efforts to program cells to produce living materials with novel functional properties, focusing on microbial systems that can be engineered to grow materials and on new genetic circuits for pattern formation that could be used to produce the more complex systems of the future.
Collapse
Affiliation(s)
- Charlie Gilbert
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
7
|
Mickoleit F, Altintoprak K, Wenz NL, Richter R, Wege C, Schüler D. Precise Assembly of Genetically Functionalized Magnetosomes and Tobacco Mosaic Virus Particles Generates a Magnetic Biocomposite. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37898-37910. [PMID: 30360046 DOI: 10.1021/acsami.8b16355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Magnetosomes represent magnetic nanoparticles with unprecedented characteristics. Both their crystal morphology and the composition of the enveloping membrane can be manipulated by genetic means, allowing the display of functional moieties on the particle surface. In this study, we explore the generation of a new biomaterial assembly by coupling magnetosomes with tobacco mosaic virus (TMV) particles, both functionalized with complementary recognition sites. TMV consists of single-stranded RNA encapsidated by more than 2100 coat proteins, which enable chemical modification via functional groups. Incubation of EmGFP- or biotin-decorated TMV particles with magnetosomes genetically functionalized with GFP-binding nanobodies or streptavidin, respectively, results in the formation of magnetic, mesoscopic, strand-like biocomposites. TMV facilitates the agglomeration of magnetosomes by providing a scaffold. The size of the TMV-magnetosome mesostrands can be adjusted by varying the TMV-magnetosome particle ratios. The versatility of this novel material combination is furthermore demonstrated by coupling magnetosomes and terminal, 5'-functionalized TMV particles with high molecular precision, which results in "drumstick"-like TMV-magnetosome complexes. In summary, our approaches provide promising strategies for the generation of new biomaterial assemblies that could be used as scaffold for the introduction of further functionalities, and we foresee a broad application potential in the biomedical and biotechnological field.
Collapse
Affiliation(s)
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | | | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | | |
Collapse
|
8
|
Mickoleit F, Borkner CB, Toro-Nahuelpan M, Herold HM, Maier DS, Plitzko JM, Scheibel T, Schüler D. In Vivo Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides. Biomacromolecules 2018; 19:962-972. [PMID: 29357230 DOI: 10.1021/acs.biomac.7b01749] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.
Collapse
Affiliation(s)
| | | | - Mauricio Toro-Nahuelpan
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | | - Jürgen M Plitzko
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | |
Collapse
|
9
|
Mickoleit F, Schüler D. Generation of Multifunctional Magnetic Nanoparticles with Amplified Catalytic Activities by Genetic Expression of Enzyme Arrays on Bacterial Magnetosomes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Frank Mickoleit
- Department Microbiology; University of Bayreuth; Universitätsstraße 30 95447 Bayreuth Germany
| | - Dirk Schüler
- Department Microbiology; University of Bayreuth; Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
10
|
Kutralam-Muniasamy G, Perez-Guevara F. Recombinant surface engineering to enhance and expand the potential of biologically produced nanoparticles: A review. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
12
|
Rehm FBH, Chen S, Rehm BHA. Enzyme Engineering for In Situ Immobilization. Molecules 2016; 21:E1370. [PMID: 27754434 PMCID: PMC6273058 DOI: 10.3390/molecules21101370] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Shuxiong Chen
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
13
|
Kong D, Wang X, Wang X, Wang X, Chen X, Ji G, Fu X, Wang S. Design, expression and characterization of single chain Fv, Mms13 and the single chain Fv‑mms13 fusion protein. Mol Med Rep 2015; 12:1213-8. [PMID: 25824464 DOI: 10.3892/mmr.2015.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Single chain Fv (scFv) antibodies are attractive as tumor-targeting vehicles due to their smaller size compared with intact antibody molecules. Mms13 is a putative membrane anchor protein of magnetosome. The present study fused the scFV gene of type Ⅳ collagenase to mms13 using the splicing by overlap extension polymerase chain reaction technique. The genes of scFv, mms13 and the scFv-mms13 fusion gene were cloned into a pET30a(+) vector to construct pET30a(+)-scFv, pET30a(+)-mms13 and pET30a(+)-scFv-mms13 expression vectors. The three protein compositions were confirmed by DNA sequencing and western blot analysis, and their cellular locations were determined using SDS-PAGE. The results of enzyme-linked immunosorbent assays and immunofluorescence demonstrated that the ScFv and ScFv-mms13 fusion proteins bound to the type Ⅳ collagenase and the antigen-associated cancer cells SMMC-7721, MCF-7 and HepG2 cells, in a dose-dependent and saturable manner. Although the immunoreactivities of ScFv-mms13 to the type Ⅳ collagenase and associated tumor cells were marginally lower than the corresponding scFv (3G11), considerable binding ability to the antigen by ScFv-mms13 remained.
Collapse
Affiliation(s)
- Deng Kong
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xiaoke Wang
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xiaohong Wang
- Department of Pharmacy and Bioscience, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xueyun Wang
- Department of Pharmacy and Bioscience, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xiaoli Chen
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Guoqiang Ji
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Shouxun Wang
- Department of Basic Medicine, Weifang Medical College, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
14
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|
15
|
Abstract
Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks.
Collapse
|
16
|
A tailored galK counterselection system for efficient markerless gene deletion and chromosomal tagging in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2014; 80:4323-30. [PMID: 24814778 DOI: 10.1128/aem.00588-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria have emerged as excellent model systems to study bacterial cell biology, biomineralization, vesicle formation, and protein targeting because of their ability to synthesize single-domain magnetite crystals within unique organelles (magnetosomes). However, only few species are amenable to genetic manipulation, and the limited methods for site-specific mutagenesis are tedious and time-consuming. Here, we report the adaptation and application of a fast and convenient technique for markerless chromosomal manipulation of Magnetospirillum gryphiswaldense using a single antibiotic resistance cassette and galK-based counterselection for marker recycling. We demonstrate the potential of this technique by genomic excision of the phbCAB operon, encoding enzymes for polyhydroxyalkanoate (PHA) synthesis, followed by chromosomal fusion of magnetosome-associated proteins to fluorescent proteins. Because of the absence of interfering PHA particles, these engineered strains are particularly suitable for microscopic analyses of cell biology and magnetosome biosynthesis.
Collapse
|
17
|
New vectors for chromosomal integration enable high-level constitutive or inducible magnetosome expression of fusion proteins in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2014; 80:2609-16. [PMID: 24532068 DOI: 10.1128/aem.00192-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and β-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP-EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC-Mag-EGFP) and 200 and 520 (for MamC-Mag-EGFP-EGFP) GFP copies were estimated to be expressed per individual magnetosome particle.
Collapse
|
18
|
Optimization of magnetosome production and growth by the magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 through a statistics-based experimental design. Appl Environ Microbiol 2013; 79:2823-7. [PMID: 23396329 DOI: 10.1128/aem.03740-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth and magnetosome production of the marine magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 were optimized through a statistics-based experimental factorial design. In the optimized growth medium, maximum magnetite yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor were obtained.
Collapse
|
19
|
Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, Rothbauer U, Schüler D. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2011; 77:6165-71. [PMID: 21764974 PMCID: PMC3165405 DOI: 10.1128/aem.05282-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells.
Collapse
Affiliation(s)
- Anna Pollithy
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Tina Romer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Claus Lang
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Frank D. Müller
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Jonas Helma
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Ulrich Rothbauer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| |
Collapse
|
20
|
Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol 2011; 77:5851-6. [PMID: 21724877 DOI: 10.1128/aem.05962-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An improved strategy was developed for the high-density culture of Magnetospirillum gryphiswaldense strain MSR-1 and large-scale magnetosome production in both 7.5- and 42-liter autofermentors. By using a nutrient-balanced feeding strategy and the replacement of carbon and nitrogen sources to reduce accumulation of Na(+) and Cl(-) ions, we reduced the factors that tend to inhibit cell growth, particularly the increase of osmotic potential. Semicontinuous culture was thereby achieved in the autofermentor for the first time. When the cells were harvested at 36 and 73 h, magnetosome yields (dry weight) as high as 168.3 and 83.5 mg/liter/day, respectively, were achieved. These values were, respectively, approximately 10 and 5 times higher than the yields achieved in previous studies and represent a significant improvement in magnetosome production efficiency.
Collapse
|
21
|
Rodríguez-Carmona E, Villaverde A. Nanostructured bacterial materials for innovative medicines. Trends Microbiol 2010; 18:423-30. [PMID: 20674365 DOI: 10.1016/j.tim.2010.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/22/2010] [Accepted: 06/18/2010] [Indexed: 12/15/2022]
Abstract
The development of innovative medicines and personalized biomedical approaches require the identification and implementation of new biocompatible materials produced by methodologically simple and cheap fabrication methods. The biological fabrication of materials, mostly carried out by microorganisms, has historically provided organic compounds with wide-spectrum biomedical applications, including hyaluronic acid, poly(gamma-glutamic acid) and polyhydroxyalkanoates. Additionally, the implementation of new methodological platforms such as metabolic engineering and systems biology have facilitated the controlled production of natural nanoparticles produced by bacteria, including metallic deposits of Au, Ag, Cd, Zn or Fe, virus-like particles or other nanoscale protein-only entities. The unexpected potential of such self-organized and functional materials in nanomedical scenarios (especially in drug delivery, imaging and tissue engineering) prompts serious consideration of further exploitation of bacterial cell factories as convenient alternatives to chemical synthesis and as sources of novel bioproducts that could dramatically expand the existing catalog of biomedical materials.
Collapse
Affiliation(s)
- Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
22
|
Villaverde A. Nanotechnology, bionanotechnology and microbial cell factories. Microb Cell Fact 2010; 9:53. [PMID: 20602780 PMCID: PMC2916890 DOI: 10.1186/1475-2859-9-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 07/05/2010] [Indexed: 11/29/2022] Open
Abstract
Nanotechnology is increasingly using both materials and nano-objects synthesized by living beings, most of them produced by microbial cells. Emerging technologies and highly integrative approaches (such as 'omics and systems biology), that have been largely proven successful for the production of proteins and secondary metabolites are now expected to become fully adapted for the improved biological production of nanostructured materials with tailored properties. The so far underestimated potential of microbial cell factories in nanotechnology and nanomedicine is expected to emerge, in the next years, in the context of novel needs envisaged in the nanoscience universe. This should prompt a careful revisiting of the microbial cell factories as the most versatile biological platforms to supply functional materials for nanotechnological applications.
Collapse
|
23
|
Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 2010; 77:208-24. [PMID: 20487281 DOI: 10.1111/j.1365-2958.2010.07202.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enclosed magnetite crystals. For magnetic orientation individual magnetosome particles are assembled into well-organized chains. The actin-like MamK and the acidic MamJ proteins were previously implicated in chain assembly. While MamK was suggested to form magnetosome-associated cytoskeletal filaments, MamJ is assumed to attach the magnetosome vesicles to these structures. Although the deletion of either mamK in Magnetospirillum magneticum, or mamJ in Magnetospirillum gryphiswaldense affected chain formation, the previously observed phenotypes were not fully consistent, suggesting different mechanisms of magnetosome chain assembly in both organisms. Here we show that in M. gryphiswaldense MamK is not absolutely required for chain formation. Straight chains, albeit shorter, fragmented and ectopic, were still formed in a mamK deletion mutant, although magnetosome filaments were absent as shown by cryo-electron tomography. Loss of MamK also resulted in reduced numbers of magnetite crystals and magnetosome vesicles and led to the mislocalization of MamJ. In addition, extensive analysis of wild type and mutant cells revealed previously unidentified ultrastructural characteristics in M. gryphiswaldense. Our results suggest that, despite of their functional equivalence, loss of MamK proteins in different bacteria may result in distinct phenotypes, which might be due to a species-specific genetic context.
Collapse
Affiliation(s)
- Emanuel Katzmann
- Ludwig-Maximillians-Universität München, Department Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|