1
|
Duncan JD, Devillers H, Camarasa C, Setati ME, Divol B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol 2024; 124:104624. [PMID: 39244375 DOI: 10.1016/j.fm.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hugo Devillers
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
2
|
Luyt NA, de Witt RN, Divol B, Patterton HG, Setati ME, Taillandier P, Bauer FF. Physical cell-cell contact elicits specific transcriptomic responses in wine yeast species. Microbiol Spectr 2024; 12:e0057223. [PMID: 39012115 DOI: 10.1128/spectrum.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions. However, the molecular nature of the mechanisms regulating these phenotypes remains unknown. Here, we present a transcriptomic analysis of physical versus metabolic contact between two wine relevant yeast species, Saccharomyces cerevisiae and Lachancea thermotolerans. The data show that these species respond to the physical presence of the other species. In S. cerevisiae, physical contact results in the upregulation of genes involved in maintaining cell wall integrity, cell wall structural components, and genes involved in the production of H2S. In L. thermotolerans, HSP stress response genes were the most significantly upregulated gene family. Both yeasts downregulated genes belonging to the FLO family, some of which play prominent roles in cellular adhesion. qPCR analysis indicates that the expression of some of these genes is regulated in a species-specific manner, suggesting that yeasts adjust gene expression to specific biotic challenges or interspecies interactions. These findings provide fundamental insights into yeast interactions and evolutionary adaptations of these species to the wine ecosystem.IMPORTANCEWithin the wine ecosystem, yeasts are the most relevant contributors to alcoholic fermentation and wine organoleptic characteristics. While some studies have described yeast-yeast interactions during alcoholic fermentation, such interactions remain ill-defined, and little is understood regarding the molecular mechanisms behind many of the phenotypes observed when two or more species are co-cultured. In particular, no study has investigated transcriptional regulation in response to physical interspecies cell-cell contact, as opposed to the generally better understood/characterized metabolic interactions. These data are of direct relevance to our understanding of microbial ecological interactions in general while also creating opportunities to improve ecosystem-based biotechnological applications such as wine fermentation. Furthermore, the presence of competitor species has rarely been considered an evolutionary biotic selection pressure. In this context, the data reveal novel gene functions. This, and further such analysis, is likely to significantly enlarge the genome annotation space.
Collapse
Affiliation(s)
- Natasha A Luyt
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Riaan N de Witt
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Benoit Divol
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Hugh G Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Mathabatha E Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Patricia Taillandier
- Institut National Polytechnique de Toulouse, Paul Sabatier Université, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Florian F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
3
|
De Guidi I, Galeote V, Blondin B, Legras JL. Copper-based grape pest management has impacted wine aroma. Sci Rep 2024; 14:10124. [PMID: 38698114 PMCID: PMC11066116 DOI: 10.1038/s41598-024-60335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Virginie Galeote
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Bruno Blondin
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Jean-Luc Legras
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France.
| |
Collapse
|
4
|
De Guidi I, Serre C, Noble J, Ortiz-Julien A, Blondin B, Legras JL. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foad050. [PMID: 38124683 PMCID: PMC11090286 DOI: 10.1093/femsyr/foad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Céline Serre
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | | | - Bruno Blondin
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Jean-Luc Legras
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
5
|
Sulphate Uptake Plays a Major Role in the Production of Sulphur Dioxide by Yeast Cells during Oenological Fermentations. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Sulphur dioxide (SO2) is mostly used as an antioxidant additive in winemaking, but excessive levels may be harmful to both wine quality and consumers health. During fermentation, yeast Saccharomyces cerevisiae contributes significantly to final SO2 levels, and low-producing strains become especially interesting for the wine industry. Recent evidence implicating the impairment of sulphate transport in the SO2 decrease prompted us to further investigate the sulphate/sulphite metabolic connection in multiple winery yeast strains. Here, we inactivated by CRISPR/Cas9 the high-affinity sulphate permeases (Sul1p and Sul2p) in four strains normally used in winemaking, selected by their different abilities to produce SO2. Mutant strains were then used to perform fermentation assays in different types of natural must, and the final levels of SO2 and other secondary metabolites, crucial for wine organoleptic properties, were further determined for all fermentation products. Overall, data demonstrated the double ΔSUL1/ΔSUL2 inactivation in winery strains significantly decreases the levels of SO2 produced by mutant cells, without however altering both yeast fermentative properties and the ability to release relevant metabolites. Since similar effects were observed in diverse must types for strains with different features, the data strongly support that sulphate assimilation is the determining factor in SO2 production during oenological fermentations.
Collapse
|
6
|
Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manufacturing of sherry wines is a unique, carefully regulated process, from harvesting to quality control of the finished product, involving dynamic biological aging in a “criadera-solera” system or some other techniques. Specialized “flor” strains of the yeast Saccharomyces cerevisiae play the central role in the sherry manufacturing process. As a result, sherry wines have a characteristic and unique chemical composition that determines their organoleptic properties (such as color, odor, and taste) and distinguishes them from all other types of wine. The use of modern methods of genetics and biotechnology contributes to a deep understanding of the microbiology of sherry production and allows us to define a new methodology for breeding valuable flor strains. This review discusses the main sherry-producing regions and the chemical composition of sherry wines, as well as genetic, oenological, and other selective markers for flor strains that can be used for screening novel candidates that are promising for sherry production among environmental isolates.
Collapse
|
7
|
Huang CW, Deed RC, Parish-Virtue K, Pilkington LI, Walker ME, Jiranek V, Fedrizzi B. Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium. Food Microbiol 2022; 109:104124. [DOI: 10.1016/j.fm.2022.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
8
|
Impact of serine and serine synthesis genes on H2S release in Saccharomyces cerevisiae during wine fermentation. Food Microbiol 2022; 103:103961. [DOI: 10.1016/j.fm.2021.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
|
9
|
Improving an Industrial Sherry Base Wine by Yeast Enhancement Strategies. Foods 2022; 11:foods11081104. [PMID: 35454691 PMCID: PMC9030371 DOI: 10.3390/foods11081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing interest in yeast selection for industrial fermentation applications since it is a factor that protects a wine’s identity. Although it is strenuous evaluating the oenological characteristics of yeasts in selection processes, in many cases the most riveting yeasts produce some undesirable organoleptic characteristics in wine. The aim of the present work is to improve an industrial yeast strain by reducing its hydrogen sulfide (H2S) production. To accomplish this, two different improvement approaches were used on said yeast: hybridization by mass mating and adaptive laboratory evolution, both performed through spore generation and conjugation, thus increasing genetic variability. Three evolved variants with lower H2S production were obtained and used as starters to carry out fermentation at an industrial level. Wine quality was analyzed by its principal oenological parameters and volatile aroma compounds, which were both corroborated by sensory evaluations. Significant differences between the produced wines have been obtained and a substantial improvement in aromatic quality has been achieved. Both hybrids were the most different to the control due to terpenes and esters production, while the evolved strain was very similar to the parental strain. Not only have organoleptic defects been reduced at an industrial level, more floral and fruitier wines have been produced.
Collapse
|
10
|
Development of a New Assay for Measuring H2S Production during Alcoholic Fermentation: Application to the Evaluation of the Main Factors Impacting H2S Production by Three Saccharomycescerevisiae Wine Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is the main volatile sulfur compound produced by Saccharomycescerevisiae during alcoholic fermentation and its overproduction leads to poor wine sensory profiles. Several factors modulate H2S production and winemakers and researchers require an easy quantitative tool to quantify their impact. In this work, we developed a new sensitive method for the evaluation of total H2S production during alcoholic fermentation using a metal trap and a fluorescent probe. With this method, we evaluated the combined impact of three major factors influencing sulfide production by wine yeast during alcoholic fermentation: assimilable nitrogen, sulfur dioxide and strain, using a full factorial experimental design. All three factors significantly impacted H2S production, with variations according to strains. This method enables large experimental designs for the better understanding of sulfide production by yeasts during fermentation.
Collapse
|
11
|
Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL's Driven Breeding Program. J Fungi (Basel) 2021; 7:304. [PMID: 33921151 PMCID: PMC8071496 DOI: 10.3390/jof7040304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many "malic consumer" loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.
Collapse
Affiliation(s)
- Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Margaux Bernard
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Maitena Muro
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| |
Collapse
|
12
|
Walker ME, Zhang J, Sumby KM, Lee A, Houlès A, Li S, Jiranek V. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Yeast 2021; 38:367-381. [PMID: 33560525 DOI: 10.1002/yea.3553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide is a common wine fault, with a rotten-egg odour, which is directly related to yeast metabolism in response to nitrogen and sulfur availability. In grape juice, sulfate is the most abundant inorganic sulfur compound, which is taken up by yeast through two high-affinity sulfate transporters, Sul1p and Sul2p, and a low affinity transporter, Soa1p. Sulfate contributes to H2 S production under nitrogen limitation, by being reduced via the Sulfur Assimilation Pathway (SAP). Therefore, yeast strains with limited H2 S are highly desirable. We report on the use of toxic analogues of sulfate following ethyl methane sulfate treatment, to isolate six wine yeast mutants that produce no or reduced H2 S and SO2 during fermentation in synthetic and natural juice. Four amino acid substitutions (A99V, G380R, N588K and E856K) in Sul1p were found in all strains except D25-1 which had heterozygous alleles. Two changes were also identified in Sul2p (L268S and A470T). The Sul1p (G380R) and Sul2p (A470T) mutations were chosen for further investigation as these residues are conserved amongst SLC26 membrane proteins (including sulfate permeases). The mutations were introduced into EC1118 using Crispr cas9 technology and shown to reduce accumulation of H2 S and do not result in increased SO2 production during fermentation of model medium (chemically defined grape juice) or Riesling juice. The Sul1p (G380R) and Sul2p (A470T) mutations are newly reported as causal mutations. Our findings contribute to knowledge of the genetic basis of H2 S production as well as the potential use of these strains for winemaking and in yeast breeding programmes.
Collapse
Affiliation(s)
- Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Jin Zhang
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Krista M Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, Australia
| | - Andrea Lee
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Anne Houlès
- Sciences et Techniques, Université Montpellier 2 (UM2), Montpellier, France
| | - Sijing Li
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, Australia
| |
Collapse
|
13
|
Song Y, Gibney P, Cheng L, Liu S, Peck G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front Microbiol 2020; 11:1264. [PMID: 32670223 PMCID: PMC7326769 DOI: 10.3389/fmicb.2020.01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The fermentation of apple juice into hard cider is a complex biochemical process that transforms sugars into alcohols by yeast, of which Saccharomyces cerevisiae is the most widely used species. Among many factors, hydrogen sulfide (H2S) production by yeast during cider fermentation is affected by yeast strain and yeast assimilable nitrogen (YAN) concentration in the apple juice. In this study, we investigated the regulatory mechanism of YAN concentration on S. cerevisiae H2S formation. Two S. cerevisiae strains, UCD522 (a H2S-producing strain) and UCD932 (a non-H2S-producing strain), were used to ferment apple juice that had Low, Intermediate, and High diammonium phosphate (DAP) supplementation. Cider samples were collected 24 and 72 h after yeast inoculation. Using RNA-Seq, differentially expressed genes (DEGs) identification and annotation, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that gene expression was dependent on yeast strain, fermentation duration, H2S formation, and the interaction of these three factors. For UCD522, under the three DAP treatments, a total of 30 specific GO terms were identified. Of the 18 identified KEGG pathways, “Sulfur metabolism,” “Glycine, serine and threonine metabolism,” and “Biosynthesis of amino acids” were significantly enriched. Both GO and KEGG analyses revealed that the “Sulfate Reduction Sequence (SRS) pathway” was significantly enriched. We also found a complex relationship between H2S production and stress response genes. For UCD522, we confirm that there is a non-linear relationship between YAN and H2S production, with the Low and Intermediate treatments having greater H2S production than the High treatment. By integrating results obtained through the transcriptomic analysis with yeast physiological data, we present a mechanistic view into the H2S production by yeast as a result of different concentrations of YAN during cider fermentation.
Collapse
Affiliation(s)
- Yangbo Song
- College of Enology, Northwest A&F University, Yangling, China.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Patrick Gibney
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Gregory Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Dahabieh MS, Thevelein JM, Gibson B. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends Biotechnol 2019; 38:241-253. [PMID: 31653446 DOI: 10.1016/j.tibtech.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Biological engineering has unprecedented potential to solve society's most pressing challenges. Engineering approaches must consider complex technical, economic, and social factors. This requires methods that confer gene/pathway-level functionality and organism-level robustness in rapid and cost-effective ways. This article compares foundational engineering approaches - bottom-up, gene-targeted engineering, and top-down, whole-genome engineering - and identifies significant complementarity between them. Cases drawn from engineering Saccharomyces cerevisiae exemplify the synergy of a combined approach. Indeed, multimodal engineering streamlines strain development by leveraging the complementarity of whole-genome and gene-targeted engineering to overcome the gap in design knowledge that restricts rational design. As biological engineers target more complex systems, this dual-track approach is poised to become an increasingly important tool to realize the promise of synthetic biology.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Renaissance BioScience, 410-2389 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
15
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
16
|
Li Y, Zhang Y, Liu M, Qin Y, Liu Y. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiol 2019; 79:147-155. [DOI: 10.1016/j.fm.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 10/28/2022]
|
17
|
Tian JL, Ren A, Wang T, Zhu J, Hu YR, Shi L, Yu HS, Zhao MW. Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum. Fungal Genet Biol 2019; 130:19-30. [PMID: 31028914 DOI: 10.1016/j.fgb.2019.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
Abstract
Hydrogen sulfide (H2S), an emerging small-molecule signalling agent, was recently shown to play a significant role in many physiological processes, but relatively few studies have been conducted on microorganisms compared with mammals and plants. By studying the pretreatment of H2S donor sodium hydrosulfide (NaHS) and the scavenger hypotaurine (HT) and Cystathionine β-synthase silenced strains, we found that H2S could alleviate the HS-induced ganoderic acids (GAs) biosynthesis. Our transcriptome results also showed that many signaling pathways and metabolic pathways, such as the glycolysis, TCA, oxidative phosphorylation and pentose phosphate pathway, are influenced by H2S. Further experimental results indicated that H2S could affect the physiological process of Ganoderma lucidum by interacting with multiple signals, including ROS, NO, AMPK, sphingolipid, mTOR, phospholipase D and MAPK, and physiological and pharmacological analyses showed that H2S might alleviate the biosynthesis of GAs by inhibiting the intracellular calcium in G. lucidum.
Collapse
Affiliation(s)
- Jia-Long Tian
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ting Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Yan-Ru Hu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Liang Shi
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Han-Shou Yu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| | - Ming-Wen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
18
|
Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Appl Environ Microbiol 2019; 85:AEM.02684-18. [PMID: 30658969 DOI: 10.1128/aem.02684-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
During alcoholic fermentation of grape sugars, wine yeasts produce a range of secondary metabolites that play an important role in the aroma profile of wines. In this study, we have explored the ability of a large number of wine yeast strains to modulate wine aroma composition, focusing on the release of the "fruity" thiols 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP) from their respective cysteinylated nonvolatile precursors. The role of the yeast gene IRC7 in thiol release has been well established, and it has been shown that a 38-bp deletion found in many wine strains cause them to express a truncated version of Irc7p that does not possess cysteine-S-conjugate β-lyase activity. In our data, we find that IRC7 allele length alone does not fully explain the capacity of a strain to release thiols. Screening of a large number of strains coupled with analysis of genomic sequence data allowed us to identify several previously undescribed single-nucleotide polymorphisms (SNPs) in IRC7 that, when coupled with allele length, more robustly explain the ability of a particular yeast strain to release thiols from their cysteinylated precursors. We also demonstrate that allelic variation of IRC7 not only affects the release of thiols but modulates the formation of negative volatile sulfur compounds from the amino acid cysteine. The results of this study provide winemakers with an improved understanding of the genetic determinants that affect wine aroma and flavor, which can be used to guide the choice of yeast strains that are fit for purpose.IMPORTANCE Volatile sulfur compounds contribute to wine aromas that may be considered pleasant, such as "tropical," "passionfruit," and "guava," as well as aromas that are considered undesirable, such as "rotten eggs," "onions," and "sewer." During fermentation, wine yeasts release some of these compounds from odorless precursor molecules, a process that is most efficient when performed by yeasts that express active forms of the protein Irc7p. We show that most wine yeasts carry mutations that reduce activity of this protein, affecting the formation of volatile sulfur compounds that impart both pleasant and unpleasant aromas. The results provide winemakers with guidance on the choice of yeasts that can emphasize or deemphasize this particular contribution to wine quality.
Collapse
|
19
|
Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations. Food Microbiol 2018; 70:206-213. [DOI: 10.1016/j.fm.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023]
|
20
|
Ferreira V, Franco-Luesma E, Vela E, López R, Hernández-Orte P. Elusive Chemistry of Hydrogen Sulfide and Mercaptans in Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2237-2246. [PMID: 28960073 DOI: 10.1021/acs.jafc.7b02427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper summarizes, discusses, and complements recent findings about the fate of H2S and methanethiol (MeSH) during wine storage. Analytical assays to determine free volatile sulfur compounds (VSCs) and brine-releasable (BR-) VSCs in combination with accelerated reductive (AR) aging and micro-oxygenation (MOX) assays allow characterizing the different categories of species able to produce H2S and MeSH and the processes of interconversion. Each wine seems to contain a specific total amount of H2S and MeSH distributed into free, metal-complexed, and oxidized forms (di and polysulfides) interconnected through reversible redox equilibria whose external expression is wine redox potential. Oxidation transforms all mercaptans likely into nonvolatile disulfides and hydrodisulfides. In anoxia, these molecules are spontaneously and quantitatively reduced back. The concomitant accumulation of major wine thiols would provoke complex dissociation and the release of free H2S and MeSH. Additionally, total amounts can increase due to the metal-catalyzed desulfhydration of cysteine and methionine.
Collapse
Affiliation(s)
- Vicente Ferreira
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry , Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , c/Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| | - Ernesto Franco-Luesma
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry , Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , c/Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| | - Eduardo Vela
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry , Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , c/Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| | - Ricardo López
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry , Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , c/Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| | - Purificación Hernández-Orte
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry , Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , c/Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| |
Collapse
|
21
|
Vela E, Hernandez-Orte P, Franco-Luesma E, Ferreira V. Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms. Food Chem 2017; 243:222-230. [PMID: 29146332 DOI: 10.1016/j.foodchem.2017.09.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022]
Abstract
This work seeks to assess the effects of micro-oxygenation (MOX) on the present and potential levels of Volatile Sulfur Compounds (VSCs) of wine. With such purpose, three red wines with a tendency to develop sulfury off-odors were subjected to three different MOX conditions (4.4-20mg/L delivered at 0.05 or 0.2mg/L/day). Samples were further subjected to Accelerated Reductive aging (AR) and analyzed for free and Brine Releasable (BR) VSCs and redox potential. Although MOX induced strong decreases in the levels of all free VSCs, hardly affected the ability of the wine to release back hydrogen sulfide and other mercaptans during AR-aging. During aging BR-levels of MOX samples became in most cases similar or higher than non-oxygenated controls. BR-levels and the fractions free/BR follow characteristic sigmoid plots when represented versus redox potential suggesting that all changes are the result of reversible equilibria between free, metal-complexed and oxidized forms of VSCs.
Collapse
Affiliation(s)
- Eduardo Vela
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Purificación Hernandez-Orte
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ernesto Franco-Luesma
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Vicente Ferreira
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
22
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
23
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res 2017; 17:4056150. [DOI: 10.1093/femsyr/fox058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
|
24
|
Vela E, Hernández-Orte P, Franco-Luesma E, Ferreira V. The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Food Chem 2017; 231:212-221. [PMID: 28449999 DOI: 10.1016/j.foodchem.2017.03.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
Abstract
Three different red wines with reductive character have been treated with two different doses of copper sulfate (0.06 and 0.5mg/L) and with a commercial copper-containing product at the recommended dose (0.6mg/L). Wines were in contact with copper one week, centrifuged and stored at 50°C in strict anoxia for 2weeks (up to 7 in one case). Brine-releasable (BR-) and free fractions of Volatile Sulfur Compounds were determined throughout the process. Relevant increases of BR-H2S suggest that those wines contained other H2S precursors non-detectable by the brine dilution method. Copper treatments had two major effects: 1) immediate decrease the levels of free H2S and methanethiol (MeSH); 2) slow the rate at which free H2S (not MeSH) increases during anoxic storage. After 7weeks of anoxia levels of free H2S and MeSH were high and similar regardless of the copper treatment. Higher copper doses could induce the accumulation of BR-H2S.
Collapse
Affiliation(s)
- Eduardo Vela
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Purificación Hernández-Orte
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ernesto Franco-Luesma
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Vicente Ferreira
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
25
|
The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation. FEMS Yeast Res 2016; 16:fow100. [DOI: 10.1093/femsyr/fow100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/04/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
|
26
|
Franco-Luesma E, Ferreira V. Formation and Release of H2S, Methanethiol, and Dimethylsulfide during the Anoxic Storage of Wines at Room Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6317-6326. [PMID: 27425214 DOI: 10.1021/acs.jafc.6b01638] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A total of 21 different wines (13 reds, 5 whites, and 3 rosés) were kept at 25 °C in anoxia for 379 days. Free and total forms of H2S and methanethiol (MeSH) and dimethylsulfide (DMS) were measured initially and after 117, 221, and 379 days of storage. Levels of free H2S, free and total MeSH, and DMS continuously increased during storage, while levels of total H2S remained essentially unchanged. Average increases of free H2S amount to 6.2 μg/L (from 1.1 to 12.9 μg/L), those of free MeSH to 1.6 μg/L (from 0.7 to 3.5 μg/L), and those of total MeSH to 1.9 μg/L (from 1.1 to 3.0 μg/L), whereas those of DMS were 27.8 μg/L (from 11 to 69 μg/L). The fraction of H2S under free forms significantly increased, suggesting that release is a major factor explaining H2S increases. All increases can be satisfactorily predicted from data obtained at 50 °C.
Collapse
Affiliation(s)
- Ernesto Franco-Luesma
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Vicente Ferreira
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA) , Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
27
|
Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B. Evolution of Volatile Sulfur Compounds during Wine Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8017-8024. [PMID: 26271945 DOI: 10.1021/acs.jafc.5b02984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Volatile sulfur compounds (VSCs) play a significant role in the aroma of foods and beverages. With very low sensory thresholds and strong unpleasant aromas, most VSCs are considered to have a negative impact on wine quality. In this study, headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to analyze the time course of the biosynthesis of 12 VSCs formed during wine fermentation. Two different strains of Saccharomyces cerevisiae, the laboratory strain BY4743 and a commercial strain, F15, were assessed using two media: synthetic grape media and Sauvignon Blanc juice. Seven VSCs were detected above background, with three rising above their sensory thresholds. The data revealed remarkable differences in the timing and evolution of production during fermentation, with a transient spike in methanethiol production early during anaerobic growth. Heavier VSCs such as benzothiazole and S-ethyl thioacetate were produced at a steady rate throughout grape juice fermentation, whereas others, such as diethyl sulfide, appear toward the very end of the winemaking process. The results also demonstrate significant differences between yeast strains and fermentation media.
Collapse
Affiliation(s)
- Matias I Kinzurik
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Mandy Herbst-Johnstone
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Richard C Gardner
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
28
|
Noble J, Sanchez I, Blondin B. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Microb Cell Fact 2015; 14:68. [PMID: 25947166 PMCID: PMC4432976 DOI: 10.1186/s12934-015-0245-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Wine yeasts can produce undesirable sulfur compounds during alcoholic fermentation, such as SO2 and H2S, in variable amounts depending mostly on the yeast strain but also on the conditions. However, although sulfur metabolism has been widely studied, some of the genetic determinants of differences in sulfite and/or sulfide production between wine yeast strains remain to be identified. In this study, we used an integrated approach to decipher the genetic determinants of variation in the production of undesirable sulfur compounds. Results We examined the kinetics of SO2 production by two parental strains, one high and one low sulfite producer. These strains displayed similar production profiles but only the high-sulfite producer strain continued to produce SO2 in the stationary phase. Transcriptomic analysis revealed that the low-sulfite producer strain overexpressed genes of the sulfur assimilation pathway, which is the mark of a lower flux through the pathway consistent with a lower intracellular concentration in cysteine. A QTL mapping strategy then enabled us to identify MET2 and SKP2 as the genes responsible for these phenotypic differences between strains and we identified new variants of these genes in the low-sulfite producer strain. MET2 influences the availability of a metabolic intermediate, O-acetylhomoserine, whereas SKP2 affects the activity of a key enzyme of the sulfur assimilation branch of the pathway, the APS kinase, encoded by MET14. Furthermore, these genes also affected the production of propanol and acetaldehyde. These pleiotropic effects are probably linked to the influence of these genes on interconnected pathways and to the chemical reactivity of sulfite with other metabolites. Conclusions This study provides new insight into the regulation of sulfur metabolism in wine yeasts and identifies variants of MET2 and SKP2 genes, that control the activity of both branches of the sulfur amino acid synthesis pathway and modulate sulfite/sulfide production and other related phenotypes. These results provide novel targets for the improvement of wine yeast strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Noble
- Lallemand SAS, Blagnac, 31700, France. .,Institut Coopératif du Vin, Lattes, 34970, France.
| | - Isabelle Sanchez
- INRA, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France. .,Supagro, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France. .,UM1, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France.
| | - Bruno Blondin
- INRA, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France. .,Supagro, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France. .,UM1, UMR1083 Sciences pour l'Oenologie, Montpellier, 34060, France.
| |
Collapse
|
29
|
Huang C, Roncoroni M, Gardner RC. MET2 affects production of hydrogen sulfide during wine fermentation. Appl Microbiol Biotechnol 2014; 98:7125-35. [PMID: 24841117 DOI: 10.1007/s00253-014-5789-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 01/08/2023]
Abstract
The production of hydrogen sulfide (H2S) during yeast fermentation contributes negatively to wine aroma. We have mapped naturally occurring mutations in commercial wine strains that affect production of H2S. A dominant R310G mutant allele of MET2, which encodes homoserine O-acetyltransferase, is present in several wine yeast strains as well as in the main lab strain S288c. Reciprocal hemizygosity and allele swap experiments demonstrated that the MET2 R310G allele confers reduced H2S production. Mutations were also identified in genes encoding the two subunits of sulfite reductase, MET5 and MET10, which were associated with reduced H2S production. The most severe of these, an allele of MET10, showed five additional phenotypes: reduced growth rate on sulfate, elevated secretion of sulfite, and reduced production in wine of three volatile sulfur compounds: methionol, carbon disulfide and methylthioacetate. Alleles of MET5 and MET10, but not MET2, affected H2S production measured by colour assays on BiGGY indicator agar, but MET2 effects were seen when bismuth was added to agar plates made with Sauvignon blanc grape juice. Collectively, the data are consistent with the hypothesis that H2S production during wine fermentation results predominantly from enzyme activity in the sulfur assimilation pathway. Lower H2S production results from mutations that reduce the activity of sulfite reductase, the enzyme that produces H2S, or that increase the activity of L-homoserine-O-acetyltransferase, which produces substrate for the next step in the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Chien Huang
- Wine Science Group, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
30
|
Parts L. Genome-wide mapping of cellular traits using yeast. Yeast 2014; 31:197-205. [PMID: 24700360 DOI: 10.1002/yea.3010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/09/2022] Open
Abstract
Yeast has long enjoyed superiority as a genetic model because of its short generation time and ease of generating alleles for genetic analysis. However, recent developments of guided nucleases for genome editing in higher eukaryotes, and funding pressures for translational findings, force all model organism communities to reaffirm and rearticulate the advantages of their chosen creature. Here I examine the utility of budding yeast for understanding the genetic basis of cellular traits, using natural variation as well as classical genetic perturbations, and its future prospects compared to undertaking the work in human cell lines. Will yeast remain central, or will it join the likes of phage as an early model that is no longer widely used to answer the pressing questions?
Collapse
Affiliation(s)
- Leopold Parts
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| |
Collapse
|
31
|
Blein-Nicolas M, Albertin W, Valot B, Marullo P, Sicard D, Giraud C, Huet S, Bourgais A, Dillmann C, de Vienne D, Zivy M. Yeast proteome variations reveal different adaptive responses to grape must fermentation. Mol Biol Evol 2013; 30:1368-83. [PMID: 23493259 DOI: 10.1093/molbev/mst050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae and S. uvarum are two domesticated species of the Saccharomyces sensu stricto clade that diverged around 100 Ma after whole-genome duplication. Both have retained many duplicated genes associated with glucose fermentation and are characterized by the ability to achieve grape must fermentation. Nevertheless, these two species differ for many other traits, indicating that they underwent different evolutionary histories. To determine how the evolutionary histories of S. cerevisiae and S. uvarum are mirrored on the proteome, we analyzed the genetic variability of the proteomes of domesticated strains of these two species by quantitative mass spectrometry. Overall, 445 proteins were quantified. Massive variations of protein abundances were found, that clearly differentiated the two species. Abundance variations in specific metabolic pathways could be related to phenotypic traits known to discriminate the two species. In addition, proteins encoded by duplicated genes were shown to be differently recruited in each species. Comparing the strain differentiation based on the proteome variability to those based on the phenotypic and genetic variations further revealed that the strains of S. uvarum and some strains of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape must fermentation arose through different evolutionary roads, involving different metabolic pathways and duplicated genes.
Collapse
|
32
|
Cordente AG, Curtin CD, Varela C, Pretorius IS. Flavour-active wine yeasts. Appl Microbiol Biotechnol 2012; 96:601-18. [PMID: 22940803 PMCID: PMC3466427 DOI: 10.1007/s00253-012-4370-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 11/26/2022]
Abstract
The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of ‘flavour phenotypes’ that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.
Collapse
Affiliation(s)
- Antonio G. Cordente
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Christopher D. Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Isak S. Pretorius
- University of South Australia, GPO Box 2471, Adelaide, SA 5001 Australia
| |
Collapse
|
33
|
De Vero L, Solieri L, Giudici P. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. Lett Appl Microbiol 2011; 53:572-5. [DOI: 10.1111/j.1472-765x.2011.03140.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Abstract
The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of "terroir" (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.
Collapse
|