1
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
3
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Wang Y, Mairinger W, Raj SJ, Yakubu H, Siesel C, Green J, Durry S, Joseph G, Rahman M, Amin N, Hassan MZ, Wicken J, Dourng D, Larbi E, Adomako LAB, Senayah AK, Doe B, Buamah R, Tetteh-Nortey JNN, Kang G, Karthikeyan A, Roy S, Brown J, Muneme B, Sene SO, Tuffuor B, Mugambe RK, Bateganya NL, Surridge T, Ndashe GM, Ndashe K, Ban R, Schrecongost A, Moe CL. Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 763:143007. [PMID: 34718001 DOI: 10.1016/j.scitotenv.2020.143007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.
Collapse
Affiliation(s)
- Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suraja J Raj
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Casey Siesel
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jamie Green
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - George Joseph
- Water Global Practice, The World Bank, Washington, DC, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | - Eugene Larbi
- Training Research and Networking for Development (TREND), Accra, Ghana
| | | | | | - Benjamin Doe
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard Buamah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Gagandeep Kang
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Arun Karthikeyan
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Sheela Roy
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bacelar Muneme
- Water Supply and Mapping, WE Consult, Maputo, Mozambique
| | - Seydina O Sene
- Initiative Prospective Agricole et Rurale (IPAR), Dakar, Senegal
| | - Benedict Tuffuor
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Najib Lukooya Bateganya
- Department of Environment and Public Health, Kampala Capital City Authority, Kampala, Uganda
| | - Trevor Surridge
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Lusaka, Zambia
| | | | - Kunda Ndashe
- Department of Environmental Health, Faculty of Health Science, Lusaka Apex Medical University, Lusaka, Zambia
| | - Radu Ban
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Christine L Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Darley PI, Hellstern J, Schink B, Philipp B. Resorcinol Hydroxylase of Azoarcus anaerobius: Molybdenum Dependence, Activity, and Heterologous Expression. Curr Microbiol 2020; 77:3385-3396. [PMID: 32915288 DOI: 10.1007/s00284-020-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/25/2020] [Indexed: 12/01/2022]
Abstract
The obligately anaerobic, denitrifying bacterium Azoarcus anaerobius strain LuFRes1 grows with resorcinol (1,3-dihydroxybenzene) as sole carbon and energy source. Resorcinol is oxidized to hydroxyhydroquinone (1,2,4-trihydroxybenzene) by resorcinol hydroxylase (RH), an inducible membrane-bound enzyme. Sequence comparison places resorcinol hydroxylase into the group of anaerobic molybdopterin oxidoreductases and dimethyl sulfoxide reductase-like enzymes. In the large subunit, a molybdopterin-binding domain was predicted, and the small subunit most likely contains two [4Fe-4S] centers. Growth of molybdate-starved cells was inhibited by tungstate, and in vitro resorcinol hydroxylase activity was inhibited by arsenite and selenite that are known to inhibit molybdenum-containing enzymes. The two genes encoding resorcinol hydroxylase could be expressed in Escherichia coli but the products remained in inclusion bodies. All attempts to purify RH from A. anaerobius or to produce soluble, active RH in E. coli failed. Nevertheless, RH was produced as a C-terminally Strep-tagged protein from plasmid pSKM1 in Thauera aromatica AR1 transconjugants carrying a transposon insertion in the coding gene for the large (ΔrhL) or the small subunit (ΔrhS) of RH from cosmid R+. RH in the membrane fraction of wild-type transconjugant T. aromatica AR1/R+ showed a specific activity of 80 mU mg-1, and the specific activity of RH in the membranes of the complemented mutants was in the same range (80-95 mU mg-1). We conclude that RH of A. anaerobius is a membrane-bound molybdoenzyme consisting of two subunits which might require a further loosely bound subunit as membrane anchor.
Collapse
Affiliation(s)
- Paula I Darley
- University of Konstanz, Fachbereich Biologie, 78457, Constance, Germany.,Cambivac Ltd, Cambridge, CB22 3AT, UK
| | - Jutta Hellstern
- University of Konstanz, Fachbereich Biologie, 78457, Constance, Germany.,Novartis Pharma AG, Lichtstrasse 35, 4056, Basel, Switzerland
| | - Bernhard Schink
- University of Konstanz, Fachbereich Biologie, 78457, Constance, Germany
| | - Bodo Philipp
- University of Konstanz, Fachbereich Biologie, 78457, Constance, Germany. .,Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany.
| |
Collapse
|
6
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
7
|
Rubio-Gómez JM, Santiago CM, Udaondo Z, Garitaonaindia MT, Krell T, Ramos JL, Daddaoua A. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Front Microbiol 2020; 11:202. [PMID: 32153524 PMCID: PMC7044273 DOI: 10.3389/fmicb.2020.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous gram-negative opportunistic human pathogen which is not considered part of the human commensal gut microbiota. However, depletion of the intestinal microbiota (Dysbiosis) following antibiotic treatment facilitates the colonization of the intestinal tract by Multidrug-Resistant P. aeruginosa. One possible strategy is based on the use of functional foods with prebiotic activity. The bifidogenic effect of the prebiotic inulin and its hydrolyzed form (fructooligosaccharide: FOS) is well established since they promote the growth of specific beneficial (probiotic) gut bacteria such as bifidobacteria. Previous studies of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 have shown that inulin and to a greater extent FOS reduce growth and biofilm formation, which was found to be due to a decrease in motility and exotoxin secretion. However, the transcriptional basis for these phenotypic alterations remains unclear. To address this question we conducted RNA-sequence analysis. Changes in the transcript level induced by inulin and FOS were similar, but a set of transcript levels were increased in response to inulin and reduced in the presence of FOS. In the presence of inulin or FOS, 260 and 217 transcript levels, respectively, were altered compared to the control to which no polysaccharide was added. Importantly, changes in transcript levels of 57 and 83 genes were found to be specific for either inulin or FOS, respectively, indicating that both compounds trigger different changes. Gene pathway analyses of differentially expressed genes (DEG) revealed a specific FOS-mediated reduction in transcript levels of genes that participate in several canonical pathways involved in metabolism and growth, motility, biofilm formation, β-lactamase resistance, and in the modulation of type III and VI secretion systems; results that have been partially verified by real time quantitative PCR measurements. Moreover, we have identified a genomic island formed by a cluster of 15 genes, encoding uncharacterized proteins, which were repressed in the presence of FOS. The analysis of isogenic mutants has shown that genes of this genomic island encode proteins involved in growth, biofilm formation and motility. These results indicate that FOS selectively modulates bacterial pathogenicity by interfering with different signaling pathways.
Collapse
Affiliation(s)
- José Manuel Rubio-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga, Málaga, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020; 9:e50845. [PMID: 32067637 PMCID: PMC7028382 DOI: 10.7554/elife.50845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Catechol dehydroxylation is a central chemical transformation in the gut microbial metabolism of plant- and host-derived small molecules. However, the molecular basis for this transformation and its distribution among gut microorganisms are poorly understood. Here, we characterize a molybdenum-dependent enzyme from the human gut bacterium Eggerthella lenta that dehydroxylates catecholamine neurotransmitters. Our findings suggest that this activity enables E. lenta to use dopamine as an electron acceptor. We also identify candidate dehydroxylases that metabolize additional host- and plant-derived catechols. These dehydroxylases belong to a distinct group of largely uncharacterized molybdenum-dependent enzymes that likely mediate primary and secondary metabolism in multiple environments. Finally, we observe catechol dehydroxylation in the gut microbiotas of diverse mammals, confirming the presence of this chemistry in habitats beyond the human gut. These results suggest that the chemical strategies that mediate metabolism and interactions in the human gut are relevant to a broad range of species and habitats.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Paola Nol Bernadino
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Michael U Luescher
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Sina Kiamehr
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Chip Le
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Jordan E Bisanz
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Peter J Turnbaugh
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Elizabeth N Bess
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Emily P Balskus
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Pacheco-Sánchez D, Rama-Garda R, Marín P, Martirani-Von Abercron SM, Marqués S. Occurrence and diversity of the oxidative hydroxyhydroquinone pathway for the anaerobic degradation of aromatic compounds in nitrate-reducing bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:525-537. [PMID: 30884168 DOI: 10.1111/1758-2229.12752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The nitrate-reducing betaproteobacteria Azoarcus anaerobius and Thauera aromatica AR-1 use an oxidative mechanism to anaerobically degrade resorcinol and 3,5-dihydroxybenzoate (3,5-DHB), respectively, rendering hydroxyhydroquinone as intermediate. The first pathway step is performed by a dimethylsulphoxide-reductase family hydroxylase. The gene cluster coding for the pathway is homologous in these strains. Only these two Rhodocyclales are known to follow this anaerobic pathway, and nothing is known about its distribution in prokaryotes. To determine the relevance and diversity of this strategy in nature, we enriched for bacteria able to oxidize resorcinol or 3,5-DHB under denitrifying conditions. Nitrate-reducing bacteria able to degrade these compounds were present in soil, aquifer and marine sediments. We were able to isolate a number of strains with this capacity from soil and aquifer samples. Amplicon libraries of rehL, the gene encoding the first step of this pathway, showed an overall low diversity, most sequences clustering with either pathway enzyme. Isolates belonging to the Beta- and Gammaproteobacteria able to grow on these substrates revealed rehL homologues only in strains belonging to Thauera and Azoarcus. Analysis of sequenced genomes in the databases detected the presence of highly similar clusters in two additional betaproteobacteria and in the gammaproteobacterium Sedimenticola selenatireducens, although anaerobic growth on a dihydroxyaromatic could only be confirmed in Thauera chlorobenzoica 3CB-1. The presence of mobile elements in the flanking sequences of some of the clusters suggested events of horizontal gene transfer, probably contributing to expand the pathway to a broader host range within the Proteobacteria.
Collapse
Affiliation(s)
- Daniel Pacheco-Sánchez
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Ramón Rama-Garda
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Patricia Marín
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Sophie-Marie Martirani-Von Abercron
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| |
Collapse
|
10
|
DbdR, a New Member of the LysR Family of Transcriptional Regulators, Coordinately Controls Four Promoters in the Thauera aromatica AR-1 3,5-Dihydroxybenzoate Anaerobic Degradation Pathway. Appl Environ Microbiol 2019; 85:AEM.02295-18. [PMID: 30389770 DOI: 10.1128/aem.02295-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
The facultative anaerobe Thauera aromatica strain AR-1 uses 3,5-dihydroxybenzoate (3,5-DHB) as a sole carbon and energy source under anoxic conditions using an unusual oxidative strategy to overcome aromatic ring stability. A 25-kb gene cluster organized in four main operons encodes the anaerobic degradation pathway for this aromatic. The dbdR gene coding for a LysR-type transcriptional regulator (LTTR), which is present at the foremost end of the cluster, is required for anaerobic growth on 3,5-DHB and for the expression of the main pathway operons. A model structure of DbdR showed conserved key residues for effector binding with its closest relative TsaR for p-toluenesulfonate degradation. We found that DbdR controlled expression of three promoters upstream from the operons coding for the three main steps of the pathway. While one of them (P orf20 ) was only active in the presence of 3,5-DHB, the other two (P dbhL and P orf18 ) showed moderate basal levels that were further induced in the presence of the pathway substrate, which needed be converted to hydroxyhydroquinone to activate transcription. Both basal and induced activities were strictly dependent on DbdR, which was also required for transcription from its own promoter. DbdR basal expression was moderately high and, unlike most LTTR, increased 2-fold in response to the presence of the effector. DbdR was found to be a tetramer in solution, producing a single retardation complex in binding assays with the three enzymatic promoters, consistent with its tetrameric structure. The three promoters had a conserved organization with a clear putative primary (regulatory) binding site and a putative secondary (activating) binding site positioned at the expected distances from the transcription start site. In contrast, two protein-DNA complexes were observed for the P dbdR promoter, which also showed significant sequence divergence from those of the three other promoters. Taken together, our results show that a single LTTR coordinately controls expression of the entire 3,5-DHB anaerobic degradation pathway in Thauera aromatica AR-1, allowing a fast and optimized response to the presence of the aromatic.IMPORTANCE Thauera aromatica AR-1 is a facultative anaerobe that is able to use 3,5-dihydroxybenzoat (3,5-DHB) as the sole carbon and energy source in a process that is dependent on nitrate respiration. We have shown that a single LysR-type regulator with unusual properties, DbdR, controls the expression of the pathway in response to the presence of the substrate; unlike other regulators of the family, DbdR does not repress but activates its own synthesis and is able to bind and activate three promoters directing the synthesis of the pathway enzymes. The promoter architecture is conserved among the three promoters but deviates from that of typical LTTR-dependent promoters. The substrate must be metabolized to an intermediate compound to activate transcription, which requires basal enzyme levels to always be present. The regulatory network present in this strain is designed to allow basal expression of the enzymatic machinery, which would rapidly metabolize the substrate when exposed to it, thus rendering the effector molecule. Once activated, the regulator induces the synthesis of the entire pathway through a positive feedback, increasing expression from all the target promoters to allow maximum growth.
Collapse
|
11
|
Fang H, Zhang H, Han L, Mei J, Ge Q, Long Z, Yu Y. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1206-1216. [PMID: 30267917 DOI: 10.1016/j.envpol.2018.09.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Activated sludge (AS) has been regarded as the main driver in the removal of organic pollutants such as pesticides due to a high diversity and abundance of microorganisms. However, little is known about the biodegradation genes (BDGs) and pesticide degradation genes (PDGs) harbored in the AS from wastewater treatment plants (WWTPs). In this study, we explored the bacterial communities and BDGs/PDGs in the AS from five WWTPs affiliated with pesticide factories across four consecutive seasons based on high-throughput sequencing. The AS in pesticide WWTPs exhibited unique bacterial taxa at the genus level. Furthermore, a total of 17 BDGs and 68 PDGs were explored with a corresponding average relative abundance of 0.002-0.046% and 2.078-7.143% in each AS sample, respectively, and some BDGs/PDGs clusters were also identified in the AS. The bacterial communities and BDGs/PDGs were season-dependent, and the total variations of 50.4% and 76.8% were jointly explained by environmental variables (pesticide types, wastewater characteristics, and temperature). In addition, network analysis and distribution patterns suggested that the potential hosts of BDGs/PDGs were Thauera, Stenotrophomonas, Mycobacterium, Hyphomicrobium, Allochromatium, Ralstonia, and Dechloromonas. Our findings demonstrated the linkages of bacterial communities and BDGs/PDGs in the AS, and depended on the seasons and the pesticide wastewater characteristics.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingxi Han
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Mei
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiqing Ge
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
The Azoarcus anaerobius 1,3-Dihydroxybenzene (Resorcinol) Anaerobic Degradation Pathway Is Controlled by the Coordinated Activity of Two Enhancer-Binding Proteins. Appl Environ Microbiol 2017; 83:AEM.03042-16. [PMID: 28258136 DOI: 10.1128/aem.03042-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
The anaerobic resorcinol degradation pathway in Azoarcus anaerobius is unique in that it uses an oxidative rather than a reductive strategy to overcome the aromatic ring stability in degradation of this compound, in a process that is dependent on nitrate respiration. We show that the pathway is organized in five transcriptional units, three of which are inducible by the presence of the substrate. Three σ54-dependent promoters located upstream from the three operons coding for the main pathway enzymes were identified, which shared a similar structure with conserved upstream activating sequences (UASs) located at 103 to 111 bp from the transcription start site. Expression of the pathway is controlled by the bacterial enhancer-binding proteins (bEBPs) RedR1 and RedR2, two homologous regulators that, despite their high sequence identity (97%), have nonredundant functions: RedR2, the master regulator which also controls RedR1 expression, is itself able to promote transcription from two of the promoters, while RedR1 activity is strictly dependent on the presence of RedR2. The two regulators were shown to interact with each other, suggesting that the natural mode of activation is by forming heterodimers, which become active in the presence of the substrate after its metabolization to hydroxybenzoquinone through the pathway enzymes. The model structure of the N-terminal domain of the proteins is composed of tandem GAF and PAS motifs; the possible mechanisms controlling the activity of the regulators are discussed.IMPORTANCEAzoarcus anaerobius is a strict anaerobe that is able to use 1,3-dihydroxybenzene as the sole carbon source in a process that is dependent on nitrate respiration. We have shown that expression of the pathway is controlled by two regulators of almost identical sequences: the bEBPs RedR1 and RedR2, which share 97% identity. These regulators control three promoters with similar structure. Despite their sequence identity, the two bEBPs are not redundant and are both required for maximum pathway expression. In fact, the two proteins function as heterodimers and require activation by the pathway intermediate hydroxyhydroquinone. The structure of the domain sensing the activation signal resembles that of regulators that are known to interact with other proteins.
Collapse
|
13
|
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58. Appl Environ Microbiol 2017; 83:AEM.00133-17. [PMID: 28188209 DOI: 10.1128/aem.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.
Collapse
|