1
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Kumagawa E, Katsumata M, Nishimura H, Watanabe T, Ishii S, Ohta Y. The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13210. [PMID: 37950419 PMCID: PMC10866074 DOI: 10.1111/1758-2229.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the β-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a β-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.
Collapse
Affiliation(s)
- Eri Kumagawa
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Hiroshi Nishimura
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Takashi Watanabe
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Shun'ichi Ishii
- Institute for Extra‐cutting‐edge Science and Technology Avant‐garde Research (X‐star)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Yukari Ohta
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
3
|
Augustiniene E, Kutraite I, Valanciene E, Matulis P, Jonuskiene I, Malys N. Transcription factor-based biosensors for detection of naturally occurring phenolic acids. N Biotechnol 2023; 78:1-12. [PMID: 37714511 DOI: 10.1016/j.nbt.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Phenolic acids including hydroxybenzoic and hydroxycinnamic acids are secondary plant and fungal metabolites involved in many physiological processes offering health and dietary benefits. They are often utilised as precursors for production of value-added compounds. The limited availability of synthetic biology tools, such as whole-cell biosensors suitable for monitoring the dynamics of phenolic acids intracellularly and extracellularly, hinders the capabilities to develop high-throughput screens to study their metabolism and forward engineering. Here, by applying a multi-genome approach, we have identified phenolic acid-inducible gene expression systems composed of transcription factor-inducible promoter pairs responding to eleven different phenolic acids. Subsequently, they were used for the development of whole-cell biosensors based on model bacterial hosts, such as Escherichia coli, Cupriavidus necator and Pseudomonas putida. The dynamics and range of the biosensors were evaluated by establishing their response and sensitivity landscapes. The specificity and previously uncharacterised interactions between transcription factor and its effector(s) were identified by a screen of twenty major phenolic acids. To exemplify applicability, we utilise a protocatechuic acid-biosensor to identify enzymes with enhanced activity for conversion of p-hydroxybenzoate to protocatechuate. Transcription factor-based biosensors developed in this study will advance the analytics of phenolic acids and expedite research into their metabolism.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Egle Valanciene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Paulius Matulis
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ilona Jonuskiene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
4
|
Bleem A, Kato R, Kellermyer ZA, Katahira R, Miyamoto M, Niinuma K, Kamimura N, Masai E, Beckham GT. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep 2023; 42:112847. [PMID: 37515767 DOI: 10.1016/j.celrep.2023.112847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.
Collapse
Affiliation(s)
- Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Miyamoto
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koh Niinuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
5
|
Otsuka Y, Araki T, Suzuki Y, Nakamura M, Kamimura N, Masai E. High-level production of 2-pyrone-4,6-dicarboxylic acid from vanillic acid as a lignin-related aromatic compound by metabolically engineered fermentation to realize industrial valorization processes of lignin. BIORESOURCE TECHNOLOGY 2023; 377:128956. [PMID: 36965585 DOI: 10.1016/j.biortech.2023.128956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC) is a valuable building block molecule produced from lignin-derived aromatic compounds by biological funneling. This study aimed to design a fermentation process for producing PDC from vanillic acid, which could be applied at an industrial production. Metabolomic analysis revealed that a high primary metabolic activity within cells was required to improve the production efficiency. Moreover, a medium with ammonium salts and no alkali metals was advantageous because it suppressed the formation of PDC-metal complexes. Resulting optimized process yielded the highest PDC titer and productivity ever reported: 99.9 g/L and 1.69 g/L/h, respectively. Per batch, 190 g of PDC was produced per liter of initial culture media, and the final liquid volume was 1.9 L. This study demonstrates the design of fermentation processes for the advanced industrial utilization of lignin by biological funneling.
Collapse
Affiliation(s)
- Yuichiro Otsuka
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | - Takuma Araki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Yuzo Suzuki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Masaya Nakamura
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
6
|
An X, Cheng Y, Zang H, Li C. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: Performance, genetic background, metabolic pathway and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121230. [PMID: 36754200 DOI: 10.1016/j.envpol.2023.121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The key to the efficient removal of pulping wastewater lies in the effective degradation of lignin at high temperature. There is thus an urgent need to seek effective eco-environmental techniques to overcome this environmental limit for lignin degradation. The soil isolate thermophilic Serratia sp. AXJ-M efficiently metabolizes lignin. Nevertheless, the underlying comprehensive molecular mechanism of lignin degradation by thermophilic AXJ-M is poorly understood. Here, strain AXJ-M showed excellent degradation ability toward diverse lignin-related aromatic compounds. Functional genome analysis and RNA-Seq disclosed several traits which in joint consideration suggest a high efficiency of AXJ-M representative to the lignin degradation and environmental adaptation. Multiomics analyses combined with GC-MS revealed seven potential lignin biodegradation pathways. DyP was predicted to be involved in the breakdown of the β-O-4 ether bond, Cα-Cβ bond and Cα oxidation of lignin by prokaryotic expression and gene knockout and complementation. Molecular docking deepens the understanding of the interaction between DyP and lignin. Toxicity assessment experiments clearly indicated that AXJ-M significantly reduced the toxicity of the metabolites. This work expands the knowledge about the degradation mechanism of thermophilic lignin-degrading bacteria, most importantly, offers a new perspective on potential applications in utilizing this strain in pulping wastewater bioremediation.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| |
Collapse
|
7
|
Biophysical and Biochemical Characterization of the Binding of the MarR-like Transcriptional Regulator Saro_0803 to the nov1 Promotor and Its Inhibition by Resveratrol. Biomolecules 2023; 13:biom13030541. [PMID: 36979476 PMCID: PMC10046596 DOI: 10.3390/biom13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Saro_0803 is a transcriptional factor modulating the transcription of the stilbene-degrading enzyme gene nov1 in Novosphingobium aromaticivorans DSM 12444. Reportedly, Saro_0803 undergoes resveratrol-mediated dissociation from the nov1 promotor and distinguishes resveratrol from its precursors, p-coumaric acid and trans-cinnamic acid, enabling the transcriptional factor to serve as a biosensor component for regulating resveratrol biosynthesis. However, little is known about the molecular mechanisms underlying the Saro_0803 interactions with either the nov1 promotor gene or resveratrol, which undermines the potential for Saro_0803 to be further modified for improved biosynthetic performance and other applications. Here, we report the discovery of the 22 bp A/T-rich Saro_0803 binding site near the −10 box of the nov1 promotor (named nov1p22bp). As validated by molecular docking-guided mutagenesis and binding affinity assays, the Saro_0803 binding of its target DNA sequence relies on charge-predominating interactions between several typical positively charged residues and nucleic acid. Furthermore, we semi-quantified the influence of resveratrol presence on Saro_0803–nov1p22bp interaction and identified a bilateral hydrophobic pocket within Saro_0803 comprising four aromatic residues that are crucial to maintaining the resveratrol binding capability of the transcriptional factor. Our data are beneficial to understanding saro_0803′s structural and functional properties, and could provide theoretical clues for future adaptations of this transcriptional factor.
Collapse
|
8
|
Allemann MN, Presley GN, Elkins JG, Michener JK. Sphingobium lignivorans sp. nov., isolated from river sediment downstream of a paper mill. Int J Syst Evol Microbiol 2023; 73. [PMID: 36790427 DOI: 10.1099/ijsem.0.005704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A bacterial isolate, B1D3AT, was isolated from river sediment collected from the Hiwassee River near Calhoun, TN, by enrichment culturing with a model 5-5' lignin dimer, dehydrodivanillate, as its sole carbon source. B1D3AT was also shown to utilize several model lignin-derived monomers and dimers as sole carbon sources in a variety of minimal media. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed yellow/cream-coloured colonies on rich agar. Optimal growth occurred at 30 °C, pH 7-8, and in the absence of NaCl. The major fatty acids of B1D3AT were C18 : 1 ω7c and C17 : 1 ω6c. The predominant hydroxy fatty acids were C14 : 0 2-OH and C15 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and sphingoglycolipid. B1D3AT contained spermidine as the only major polyamine. The major isoprenoid quinone was Q-10 with minor amounts of Q-9 and Q-11. The genomic DNA G+C content of B1D3AT was 65.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 49 core, universal genes defined by Clusters of Orthologous Groups gene families indicated that B1D3AT was a member of the genus Sphingobium. B1D3AT was most closely related to Sphingobium sp. SYK-6, with a 100 % 16S rRNA gene sequence similarity. B1D3AT showed 78.1-89.9 % average nucleotide identity and 19.5-22.2% digital DNA-DNA hybridization identity with other type strains from the genus Sphingobium. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain B1D3AT should be classified as representing a novel species of the genus Sphingobium, for which the name Sphingobium lignivorans sp. nov. is proposed. The type strain is strain B1D3AT (ATCC TSD-279T=DSM 111877T).
Collapse
Affiliation(s)
- Marco N Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Gerald N Presley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Present address: Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
9
|
The Catabolic System of Acetovanillone and Acetosyringone in Sphingobium sp. Strain SYK-6 Useful for Upgrading Aromatic Compounds Obtained through Chemical Lignin Depolymerization. Appl Environ Microbiol 2022; 88:e0072422. [PMID: 35938864 PMCID: PMC9397112 DOI: 10.1128/aem.00724-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acetovanillone is a major aromatic monomer produced in oxidative/base-catalyzed lignin depolymerization. However, the production of chemical products from acetovanillone has not been explored due to the lack of information on the microbial acetovanillone catabolic system. Here, the acvABCDEF genes were identified as specifically induced genes during the growth of Sphingobium sp. strain SYK-6 cells with acetovanillone and these genes were essential for SYK-6 growth on acetovanillone and acetosyringone (a syringyl-type acetophenone derivative). AcvAB and AcvF produced in Escherichia coli phosphorylated acetovanillone/acetosyringone and dephosphorylated the phosphorylated acetovanillone/acetosyringone, respectively. AcvCDE produced in Sphingobium japonicum UT26S carboxylated the reaction products generated from acetovanillone/acetosyringone by AcvAB and AcvF into vanilloyl acetic acid/3-(4-hydroxy-3,5-dimethoxyphenyl)-3-oxopropanoic acid. To demonstrate the feasibility of producing cis,cis-muconic acid from acetovanillone, a metabolic modification on a mutant of Pseudomonas sp. strain NGC7 that accumulates cis,cis-muconic acid from catechol was performed. The resulting strain expressing vceA and vceB required for converting vanilloyl acetic acid to vanillic acid and aroY encoding protocatechuic acid decarboxylase in addition to acvABCDEF successfully converted 1.2 mM acetovanillone to approximately equimolar cis,cis-muconic acid. Our results are expected to help improve the yield and purity of value-added chemical production from lignin through biological funneling. IMPORTANCE In the alkaline oxidation of lignin, aromatic aldehydes (vanillin, syringaldehyde, and p-hydroxybenzaldehyde), aromatic acids (vanillic acid, syringic acid, and p-hydroxybenzoic acid), and acetophenone-related compounds (acetovanillone, acetosyringone, and 4'-hydroxyacetophenone) are produced as major aromatic monomers. Also, base-catalyzed depolymerization of guaiacyl lignin resulted in vanillin, vanillic acid, guaiacol, and acetovanillone as primary aromatic monomers. To date, microbial catabolic systems of vanillin, vanillic acid, and guaiacol have been well characterized, and the production of value-added chemicals from them has also been explored. However, due to the lack of information on the microbial acetovanillone and acetosyringone catabolic system, chemical production from acetovanillone and acetosyringone has not been achieved. This study elucidated the acetovanillone/acetosyringone catabolic system and demonstrates the potential of using these genes for the production of value-added chemicals from these compounds.
Collapse
|
10
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
11
|
Mueller J, Willett H, Feist AM, Niu W. Engineering Pseudomonas putida for Improved Utilization of Syringyl Aromatics. Biotechnol Bioeng 2022; 119:2541-2550. [PMID: 35524438 PMCID: PMC9378539 DOI: 10.1002/bit.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Lignin is a largely untapped source for the bioproduction of value‐added chemicals. Pseudomonas putida KT2440 has emerged as a strong candidate for bioprocessing of lignin feedstocks due to its resistance to several industrial solvents, broad metabolic capabilities, and genetic amenability. Here we demonstrate the engineering of P. putida for the ability to metabolize syringic acid, one of the major products that comes from the breakdown of the syringyl component of lignin. The rational design was first applied for the construction of strain Sy‐1 by overexpressing a native vanillate demethylase. Subsequent adaptive laboratory evolution (ALE) led to the generation of mutations that achieved robust growth on syringic acid as a sole carbon source. The best mutant showed a 30% increase in the growth rate over the original engineered strain. Genomic sequencing revealed multiple mutations repeated in separate evolved replicates. Reverse engineering of mutations identified in agmR, gbdR, fleQ, and the intergenic region of gstB and yadG into the parental strain recaptured the improved growth of the evolved strains to varied extent. These findings thus reveal the ability of P. putida to utilize lignin more fully as a feedstock and make it a more economically viable chassis for chemical production.
Collapse
Affiliation(s)
- Joshua Mueller
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Howard Willett
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.,The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
12
|
Kaur A, van der Peet PL, Mui JWY, Herisse M, Pidot S, Williams SJ. Genome sequences of Arthrobacter spp. that use a modified sulfoglycolytic Embden-Meyerhof-Parnas pathway. Arch Microbiol 2022; 204:193. [PMID: 35201431 PMCID: PMC8873060 DOI: 10.1007/s00203-022-02803-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022]
Abstract
Sulfoglycolysis pathways enable the breakdown of the sulfosugar sulfoquinovose and environmental recycling of its carbon and sulfur content. The prototypical sulfoglycolytic pathway is a variant of the classical Embden–Meyerhof–Parnas (EMP) pathway that results in formation of 2,3-dihydroxypropanesulfonate and was first described in gram-negative Escherichia coli. We used enrichment cultures to discover new sulfoglycolytic bacteria from Australian soil samples. Two gram-positive Arthrobacter spp. were isolated that produced sulfolactate as the metabolic end-product. Genome sequences identified a modified sulfoglycolytic EMP gene cluster, conserved across a range of other Actinobacteria, that retained the core sulfoglycolysis genes encoding metabolic enzymes but featured the replacement of the gene encoding sulfolactaldehyde (SLA) reductase with SLA dehydrogenase, and the absence of sulfoquinovosidase and sulfoquinovose mutarotase genes. Excretion of sulfolactate by these Arthrobacter spp. is consistent with an aerobic saprophytic lifestyle. This work broadens our knowledge of the sulfo-EMP pathway to include soil bacteria.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phillip L van der Peet
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Janice W-Y Mui
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marion Herisse
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Sacha Pidot
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
14
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
15
|
Wada A, Prates ÉT, Hirano R, Werner AZ, Kamimura N, Jacobson DA, Beckham GT, Masai E. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab Eng 2021; 64:167-179. [PMID: 33549838 DOI: 10.1016/j.ymben.2021.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.
Collapse
Affiliation(s)
- Ayumu Wada
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Érica T Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ryo Hirano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|