1
|
Metz F, Myers KS, Lu F, Noguera DR, Donohue TJ. Transcriptomic data sets for Novosphingobium aromaticivorans grown with the β-5-linked aromatic dimer dehydrodiconiferyl alcohol and the related G-aromatic monomers vanillin and ferulic acid. Microbiol Resour Announc 2024; 13:e0084524. [PMID: 39365036 PMCID: PMC11555984 DOI: 10.1128/mra.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
The transcriptomes of a 2-pyrone-4,6-dicarboxylic acid-producing strain of Novosphingobium aromaticivorans DSM12444 were determined when grown in minimal medium containing glucose alone or glucose plus vanillin, ferulic acid, or the β-5-linked aromatic dimer dehydrodiconiferyl alcohol as carbon sources. Here, we present the RNA-sequencing data we obtained.
Collapse
Affiliation(s)
- Fletcher Metz
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Fachuang Lu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Metz F, Olsen AM, Lu F, Myers KS, Allemann MN, Michener JK, Noguera DR, Donohue TJ. Catabolism of β-5 linked aromatics by Novosphingobium aromaticivorans. mBio 2024; 15:e0171824. [PMID: 39012147 PMCID: PMC11323797 DOI: 10.1128/mbio.01718-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Aromatic compounds are an important source of commodity chemicals traditionally produced from fossil fuels. Aromatics derived from plant lignin can potentially be converted into commodity chemicals through depolymerization followed by microbial funneling of monomers and low molecular weight oligomers. This study investigates the catabolism of the β-5 linked aromatic dimer dehydrodiconiferyl alcohol (DC-A) by the bacterium Novosphingobium aromaticivorans. We used genome-wide screens to identify candidate genes involved in DC-A catabolism. Subsequent in vivo and in vitro analyses of these candidate genes elucidated a catabolic pathway composed of four required gene products and several partially redundant dehydrogenases that convert DC-A to aromatic monomers that can be funneled into the central aromatic metabolic pathway of N. aromaticivorans. Specifically, a newly identified γ-formaldehyde lyase, PcfL, opens the phenylcoumaran ring to form a stilbene and formaldehyde. A lignostilbene dioxygenase, LsdD, then cleaves the stilbene to generate the aromatic monomers vanillin and 5-formylferulate (5-FF). We also showed that the aldehyde dehydrogenase FerD oxidizes 5-FF before it is decarboxylated by LigW, yielding ferulic acid. We found that some enzymes involved in the β-5 catabolism pathway can act on multiple substrates and that some steps in the pathway can be mediated by multiple enzymes, providing new insights into the robust flexibility of aromatic catabolism in N. aromaticivorans. A comparative genomic analysis predicted that the newly discovered β-5 aromatic catabolic pathway is common within the order Sphingomonadales. IMPORTANCE In the transition to a circular bioeconomy, the plant polymer lignin holds promise as a renewable source of industrially important aromatic chemicals. However, since lignin contains aromatic subunits joined by various chemical linkages, producing single chemical products from this polymer can be challenging. One strategy to overcome this challenge is using microbes to funnel a mixture of lignin-derived aromatics into target chemical products. This approach requires strategies to cleave the major inter-unit linkages of lignin to release monomers for funneling into valuable products. In this study, we report newly discovered aspects of a pathway by which the Novosphingobium aromaticivorans DSM12444 catabolizes aromatics joined by the second most common inter-unit linkage in lignin, the β-5 linkage. This work advances our knowledge of aromatic catabolic pathways, laying the groundwork for future metabolic engineering of this and other microbes for optimized conversion of lignin into products.
Collapse
Affiliation(s)
- Fletcher Metz
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail M. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Fachuang Lu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco N. Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
García-Romero I, de Dios R, Reyes-Ramírez F. An improved genome editing system for Sphingomonadaceae. Access Microbiol 2024; 6:000755.v3. [PMID: 38868378 PMCID: PMC11165598 DOI: 10.1099/acmi.0.000755.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The sphingomonads encompass a diverse group of bacteria within the family Sphingomonadaceae, with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome. Here, we present a markerless genome editing method for Sphingopyxis granuli TFA, which can be further optimised for other sphingomonads. This procedure is based on a double recombination triggered by a DNA double-strand break in the chromosome. The strength of this protocol lies in forcing the second recombination rather than favouring it by pressing a counterselection marker, thus avoiding laborious restreaking or passaging screenings. Additionally, we introduce a modification with respect to the original protocol to increase the efficiency of the screening after the first recombination event. We show this procedure step by step and compare our modified method with respect to the original one by deleting ecfG2, the master regulator of the general stress response in S. granuli TFA. This adds to the genetic tool repertoire that can be applied to sphingomonads and stands as an efficient option for fast genome editing of this bacterial group.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| | - Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences,, Brunel University London, Uxbridge, UK
| | - Francisca Reyes-Ramírez
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Vilbert AC, Kontur WS, Gille D, Noguera DR, Donohue TJ. Engineering Novosphingobium aromaticivorans to produce cis,cis-muconic acid from biomass aromatics. Appl Environ Microbiol 2024; 90:e0166023. [PMID: 38117061 PMCID: PMC10807440 DOI: 10.1128/aem.01660-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The platform chemical cis,cis-muconic acid (ccMA) provides facile access to a number of monomers used in the synthesis of commercial plastics. It is also a metabolic intermediate in the β-ketoadipic acid pathway of many bacteria and, therefore, a current target for microbial production from abundant renewable resources via metabolic engineering. This study investigates Novosphingobium aromaticivorans DSM12444 as a chassis for the production of ccMA from biomass aromatics. The N. aromaticivorans genome predicts that it encodes a previously uncharacterized protocatechuic acid (PCA) decarboxylase and a catechol 1,2-dioxygenase, which would be necessary for the conversion of aromatic metabolic intermediates to ccMA. This study confirmed the activity of these two enzymes in vitro and compared their activity to ones that have been previously characterized and used in ccMA production. From these results, we generated one strain that is completely derived from native genes and a second that contains genes previously used in microbial engineering synthesis of this compound. Both of these strains exhibited stoichiometric production of ccMA from PCA and produced greater than 100% yield of ccMA from the aromatic monomers that were identified in liquor derived from alkaline pretreated biomass. Our results show that a strain completely derived from native genes and one containing homologs from other hosts are both capable of stoichiometric production of ccMA from biomass aromatics. Overall, this work combines previously unknown aspects of aromatic metabolism in N. aromaticivorans and the genetic tractability of this organism to generate strains that produce ccMA from deconstructed biomass.IMPORTANCEThe production of commodity chemicals from renewable resources is an important goal toward increasing the environmental and economic sustainability of industrial processes. The aromatics in plant biomass are an underutilized and abundant renewable resource for the production of valuable chemicals. However, due to the chemical composition of plant biomass, many deconstruction methods generate a heterogeneous mixture of aromatics, thus making it difficult to extract valuable chemicals using current methods. Therefore, recent efforts have focused on harnessing the pathways of microorganisms to convert a diverse set of aromatics into a single product. Novosphingobium aromaticivorans DSM12444 has the native ability to metabolize a wide range of aromatics and, thus, is a potential chassis for conversion of these abundant compounds to commodity chemicals. This study reports on new features of N. aromaticivorans that can be used to produce the commodity chemical cis,cis-muconic acid from renewable and abundant biomass aromatics.
Collapse
Affiliation(s)
- Avery C. Vilbert
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wayne S. Kontur
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Derek Gille
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Novosphingobium aromaticivorans. Metabolites 2022; 12:metabo12040366. [PMID: 35448553 PMCID: PMC9028409 DOI: 10.3390/metabo12040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin is an abundant renewable source of aromatics and precursors for the production of other organic chemicals. However, lignin is a heterogeneous polymer, so the mixture of aromatics released during its depolymerization can make its conversion to chemicals challenging. Microbes are a potential solution to this challenge, as some can catabolize multiple aromatic substrates into one product. Novosphingobium aromaticivorans has this ability, and its use as a bacterial chassis for lignin valorization could be improved by the ability to predict product yields based on thermodynamic and metabolic inputs. In this work, we built a genome-scale metabolic model of N. aromaticivorans, iNovo479, to guide the engineering of strains for aromatic conversion into products. iNovo479 predicted product yields from single or multiple aromatics, and the impact of combinations of aromatic and non-aromatic substrates on product yields. We show that enzyme reactions from other organisms can be added to iNovo479 to predict the feasibility and profitability of producing additional products by engineered strains. Thus, we conclude that iNovo479 can help guide the design of bacteria to convert lignin aromatics into valuable chemicals.
Collapse
|