1
|
Zhang Q, Feng Y, Liang X, Wu S, He F, Guan Y, Wang Z. Efficient bio-reduction of 3-nitro phthalic acid using engineered nitroreductase and V2O5. Process Biochem 2025; 148:157-167. [DOI: 10.1016/j.procbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Jiang Y, Wang K, Xu L, Xu L, Xu Q, Mu Y, Hong Q, He J, Jiang J, Qiu J. DipR, a GntR/FadR-family transcriptional repressor: regulatory mechanism and widespread distribution of the dip cluster for dipicolinic acid catabolism in bacteria. Nucleic Acids Res 2024; 52:10951-10964. [PMID: 39180394 PMCID: PMC11472048 DOI: 10.1093/nar/gkae728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Dipicolinic acid is an essential component of bacterial spores for stress resistance, which is released into the environment after spore germination. In a previous study, a dip gene cluster was found to be responsible for the catabolism of dipicolinic acid in Alcaligenes faecalis JQ135. However, the transcriptional regulatory mechanism remains unclear. The present study characterized the new GntR/FadR family transcriptional factor DipR, showing that the dip cluster is transcribed as the six transcriptional units, dipR, dipA, dipBC, dipDEFG, dipH and dipJKLM. The purified DipR protein has six binding sites sharing the 6-bp conserved motif sequence 5'-GWATAC-3'. Site-directed mutations indicated that these motif sequences are essential for DipR binding. Moreover, the four key amino acid residues R63, R67, H196 and H218 of DipR, examined by site-directed mutagenesis, played crucial roles in DipR regulation. Bioinformatics analysis showed that dip clusters including dipR genes are widely distributed in bacteria, are taxon-related, and co-evolved with their hosts. This paper provides new insights into the transcriptional regulatory mechanism of dipicolinic acid degradation by DipR in bacteria.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kexin Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanyi Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qimiao Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Mu
- Taizhou Center for Disease Prevention and Control, Taizhou 225300, China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Wang Z, Ma R, Chen B, Yu X, Wang X, Zuo X, Liang B, Yang J. A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. Biosens Bioelectron 2024; 244:115805. [PMID: 37948915 DOI: 10.1016/j.bios.2023.115805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Detecting unexploded landmines is critical due to the environmental pollution and potential humanitarian risks caused by buried landmines. Therefore, this study focused on developing a biosensor system capable of detecting explosives safely and efficiently. A novel transcription factor-based Escherichia coli biosensor was designed to detect 1,3-dinitrobenzene (1,3-DNB). The MexT transcription factor from Pseudomonas putida (P. putida) was identified as the fundamental sensing element in this biosensor. The study found that MexT positively regulated the transcription of PP_2827 by binding to the bidirectional promoter region between them, and significantly enhanced the expression of downstream genes under the condition of 1,3-DNB. The MexT-based biosensor for 1,3-DNB was developed by adopting different combinations of the mexT gene and promoters. The optimized biosensor demonstrated adequate sensitivity for detecting 0.1 μg/mL of 1,3-DNB in a liquid solution with satisfactory specificity and long-term stability. Subsequently, the MexT-based biosensor was integrated into a detection device to simulate the in-field exploration of explosives. The system exhibited a detection sensitivity of 0.5 mg/kg for 1,3-DNB in the sand, and realized the detection of on-site and large-scale area and the location of buried 1,3-DNB under the soil. The study provided a novel transcription factor-based bacterial biosensor and a complete system (China Earth Eye, CEE) for sensitive detection of 1,3-DNB. The good performance of this biosensor system can facilitate the development of accurate, on-site, and high-efficient exploration of explosives in real extensive minefields. Moreover, this 1,3-DNB biosensor can be complementary to the 2,4-DNT biosensor reported before, demonstrating its potential applications in military situations.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Ran Ma
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bingjing Chen
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xiaotong Yu
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xue Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xinyun Zuo
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bo Liang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| | - Jianming Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| |
Collapse
|
4
|
Peng YP, Ma L, Huang Y, Mo MH, Liu JJ, Liu T. High-throughput method for screening pendimethalin-degrading bacteria from one microbial bank. FEMS Microbiol Lett 2024; 371:fnae052. [PMID: 38982336 DOI: 10.1093/femsle/fnae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
The extensive use of chemical pesticides, such as herbicides, has resulted in significant environmental pollution. Microbial degradation represents a crucial approach for managing this pesticide-associated pollution, with enrichment culturing serving as a method for isolating pesticide-degrading microorganisms. However, the efficiency of this strategy is limited, often yielding only a few isolated strains. In this study, a new mineral salt medium (MSM) was developed, and a high-throughput method was used for screening pendimethalin-degrading bacteria by measuring the bacterial growth in the MSM. The utilization of this method resulted in the isolation of 56 pendimethalin-degrading bacteria from approximately 2000 bacterial strains, including 37 Bacillus spp., 10 Alcaligenes spp., 5 Pseudomonas spp., and other 4 strains identified for the first time as pendimethalin-degrading strains. This method may hold promise not only for isolating bacterial strains capable of degrading other pesticides but also for facilitating the utilization of the substantial bacterial strains stored in bacterial banks.
Collapse
Affiliation(s)
- Ya-Peng Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Liang Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Jian-Jin Liu
- Technical Center, Puer Corporation of Yunnan Tobacco Corporation, Puer 650202, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
5
|
Ke Z, Zhu Q, Zhang M, Gao S, jiang M, Zhou Y, Qiu J, Cheng M, Yan X, Wang J, Hong Q. Unveiling the regulatory mechanisms of salicylate degradation gene cluster cehGHIR4 in Rhizobium sp. strain X9. Appl Environ Microbiol 2023; 89:e0080223. [PMID: 37800922 PMCID: PMC10617420 DOI: 10.1128/aem.00802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 10/07/2023] Open
Abstract
In a previous study, the novel gene cluster cehGHI was found to be involved in salicylate degradation through the CoA-mediated pathway in Rhizobium sp. strain X9 (Mol Microbiol 116:783-793, 2021). In this study, an IclR family transcriptional regulator CehR4 was identified. In contrast to other regulators involved in salicylate degradation, cehR4 forms one operon with the gentisyl-CoA thioesterase gene cehI, while cehG and cehH (encoding salicylyl-CoA ligase and salicylyl-CoA hydroxylase, respectively) form another operon. cehGH and cehIR4 are divergently transcribed, and their promoters overlap. The results of the electrophoretic mobility shift assay and DNase I footprinting showed that CehR4 binds to the 42-bp motif between genes cehH and cehI, thus regulating transcription of cehGH and cehIR4. The repeat sequences IR1 (5'-TTTATATAAA-3') and IR2 (5'-AATATAGAAA-3') in the motif are key sites for CehR4 binding. The arrangement of cehGH and cehIR4 and the conserved binding motif of CehR4 were also found in other bacterial genera. The results disclose the regulatory mechanism of salicylate degradation through the CoA pathway and expand knowledge about the systems controlled by IclR family transcriptional regulators.IMPORTANCEThe long-term residue of aromatic compounds in the environment has brought great threat to the environment and human health. Microbial degradation plays an important role in the elimination of aromatic compounds in the environment. Salicylate is a common intermediate metabolite in the degradation of various aromatic compounds. Recently, Rhizobium sp. strain X9, capable of degrading the pesticide carbaryl, was isolated from carbaryl-contaminated soil. Salicylate is the intermediate metabolite that appeared during the degradation of carbaryl, and a novel salicylate degradation pathway and the involved gene cluster cehGHIR4 have been identified. This study identified and characterized the IclR transcription regulator CehR4 that represses transcription of cehGHIR4 gene cluster. Additionally, the genetic arrangements of cehGH and cehIR4 and the binding sites of CehR4 were also found in other bacterial genera. This study provides insights into the biodegradation of salicylate and provides an application in the bioremediation of aromatic compound-contaminated environments.
Collapse
Affiliation(s)
- Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingli jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Leng XY, Zhao LX, Gao S, Ye F, Fu Y. Review on the Discovery of Novel Natural Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466454 DOI: 10.1021/acs.jafc.3c03585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Tian Y, Zhao G, Cheng M, Lu L, Zhang H, Huang X. A nitroreductase DnrA catalyzes the biotransformation of several diphenyl ether herbicides in Bacillus sp. Za. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12647-5. [PMID: 37395748 DOI: 10.1007/s00253-023-12647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 μM (fomesafen), 23.64 μM (bifenox), 26.19 μM (fluoroglycofen), 28.24 μM (acifluorfen), and 36.32 μM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Zhu Q, Bai X, Li Q, Zhang M, Hu G, Pan K, Liu H, Ke Z, Hong Q, Qiu J. PcaR, a GntR/FadR Family Transcriptional Repressor Controls the Transcription of Phenazine-1-Carboxylic Acid 1,2-Dioxygenase Gene Cluster in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2023; 89:e0212122. [PMID: 37191535 PMCID: PMC10304782 DOI: 10.1128/aem.02121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
In our previous study, the phenazine-1-carboxylic acid (PCA) 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster) in Sphingomonas histidinilytica DS-9 was identified to be responsible for the conversion of PCA to 1,2-dihydroxyphenazine (Ren Y, Zhang M, Gao S, Zhu Q, et al. 2022. Appl Environ Microbiol 88:e00543-22). However, the regulatory mechanism of the pcaA1A2A3A4 cluster has not been elucidated yet. In this study, the pcaA1A2A3A4 cluster was found to be transcribed as two divergent operons: pcaA3-ORF5205 (named A3-5205 operon) and pcaA1A2-ORF5208-pcaA4-ORF5210 (named A1-5210 operon). The promoter regions of the two operons were overlapped. PcaR acts as a transcriptional repressor of the pcaA1A2A3A4 cluster, and it belongs to GntR/FadR family transcriptional regulator. Gene disruption of pcaR can shorten the lag phase of PCA degradation. The results of electrophoretic mobility shift assay and DNase I footprinting showed that PcaR binds to a 25-bp motif in the ORF5205-pcaA1 intergenic promoter region to regulate the expression of two operons. The 25-bp motif covers the -10 region of the promoter of A3-5205 operon and the -35 region and -10 region of the promoter of A1-5210 operon. The TNGT/ANCNA box within the motif was essential for PcaR binding to the two promoters. PCA acted as an effector of PcaR, preventing it from binding to the promoter region and repressing the transcription of the pcaA1A2A3A4 cluster. In addition, PcaR represses its own transcription, and this repression can be relieved by PCA. This study reveals the regulatory mechanism of PCA degradation in strain DS-9, and the identification of PcaR increases the variety of regulatory model of the GntR/FadR-type regulator. IMPORTANCE Sphingomonas histidinilytica DS-9 is a phenazine-1-carboxylic acid (PCA)-degrading strain. The 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster, encoding dioxygenase PcaA1A2, reductase PcaA3, and ferredoxin PcaA4) is responsible for the initial degradation step of PCA and widely distributed in Sphingomonads, but its regulatory mechanism has not been investigated yet. In this study, a GntR/FadR-type transcriptional regulator PcaR repressing the transcription of pcaA1A2A3A4 cluster and pcaR gene was identified and characterized. The binding site of PcaR in ORF5205-pcaA1 intergenic promoter region contains a TNGT/ANCNA box, which is important for the binding. These findings enhance our understanding of the molecular mechanism of PCA degradation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuekun Bai
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Gang Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Kaihua Pan
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongfei Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, People’s Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Pendimethalin induces apoptotic cell death through activating ER stress-mediated mitochondrial dysfunction in human umbilical vein endothelial cells. Food Chem Toxicol 2022; 168:113370. [PMID: 35985363 DOI: 10.1016/j.fct.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
Pendimethalin is globally registered for control of a wide range of weeds in agriculture and home landscaping. Human exposure to pendimethalin can occur by the oral route through food and other sources. Endothelial function is vital to numerous biological processes, and endothelial dysfunction and poor vascular health is associated with increased atherosclerotic events; however, no study has yet investigated the potential effect of pendimethalin on endothelial function and vasculature formation. The objective of the current study is to investigate if pendimethalin may affect the viability and function of vascular endothelial cells. We observed that pendimethalin significantly repressed viability of human endothelial cells, inducing G1 cell cycle arrest and apoptotic/necrotic cell death. Pendimethalin treatment also activated ER stress and autophagy, leading to loss of mitochondrial membrane potential. In addition, pendimethalin impaired the tube forming and migratory abilities of endothelial cells. This study provides previously unrecognized adverse effects of pendimethalin in vascular endothelial cells, mediated by ER stress-induced mitochondrial dysfunction.
Collapse
|
10
|
Luján AP, Bhat MF, Saravanan T, Poelarends GJ. Chemo‐ and Enantioselective Photoenzymatic Ketone Reductions Using a Promiscuous Flavin‐dependent Nitroreductase. ChemCatChem 2022. [DOI: 10.1002/cctc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandro Prats Luján
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Mohammad Faizan Bhat
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Thangavelu Saravanan
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Gerrit J. Poelarends
- University of Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713 AV Groningen NETHERLANDS
| |
Collapse
|
11
|
Hamidović S, Vukelić N, Gavrić T, Jovičić-Petrović J, Kljujev I, Karličić V, Lalević B. The effects of the "Stomp" herbicide application on the microbial prevalence in the soil. ZEMLJISTE I BILJKA 2022. [DOI: 10.5937/zembilj2201015h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Agricultural production has benefited a lot from herbicides; however, the use of herbicides caused many environmental problems. Herbicide application can affect the biodiversity of an ecosystem by killing non-target organisms. Microorganisms in the soil are important factors for plant growth; they represent the biological factor of soil fertility. Herbicides can have a beneficial effect on the development of some microorganisms and a negative on others, leading to depletion of microbial diversity in soil. The objective of this work is to determine microbial activity in the soil and to isolate herbicide-resistant bacteria after the use of the "Stomp" herbicide. Agar plate method was used for the determination of microbial prevalence in the soil. The results showed an increase in the total number of bacteria, ammonifiers, fungi, and actinomycetes. Nine isolates, mostly Gram-positive spore-forming rods, showed an ability to grow in the mineral salt medium with different concentrations of "Stomp" herbicide. Isolates G1/1 and G1/2, showed high level of tolerance at the initial pendimethalin concentration of 25 mg/l. Those isolates have the potential to be used to decontaminate herbicide affected ecosystems.
Collapse
|
12
|
Two LysR family transcriptional regulators, McbH and McbN, activate the operons responsible for the midstream and downstream pathways of carbaryl degradation in Pseudomonas sp. strain XWY-1, respectively. Appl Environ Microbiol 2021; 88:e0206021. [PMID: 34936841 DOI: 10.1128/aem.02060-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, a LysR family transcriptional regulator McbG that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 has been identified by us (Appl. Environ. Microbiol. 2021, 87(9): e02970-20.). In this study, we identified McbH and McbN, which activate mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study reveals the regulatory mechanism for the midstream and downstream pathway of carbaryl degradation in strain XWY-1 and further enriches the members of the LysR transcription regulator family. IMPORTANCE: The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM and mcbOPQ. Previous studies demonstrated that the mcbA gene responsible for hydrolysis of carbaryl to 1-naphthol is constitutively expressed and the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster responsible for the degradation of salicylate to gentisate and mcbOPQ cluster responsible for the degradation of gentisate to pyruvate and fumarate, respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LTTR binding sequence affects the binding of McbN to promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.
Collapse
|
13
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Meng Y, Zhong K, Chen S, Huang Y, Wei Y, Wu J, Liu J, Xu Z, Guo J, Liu F, Lu H. Cardiac toxicity assessment of pendimethalin in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112514. [PMID: 34280841 DOI: 10.1016/j.ecoenv.2021.112514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.
Collapse
Affiliation(s)
- Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Suping Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Juan Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Juan Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Jing Guo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of life sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China.
| |
Collapse
|
15
|
Structure and substrate specificity determinants of NfnB, a dinitroaniline herbicide-catabolizing nitroreductase from Sphingopyxis sp. strain HMH. J Biol Chem 2021; 297:101143. [PMID: 34473996 PMCID: PMC8484813 DOI: 10.1016/j.jbc.2021.101143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + β fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75–Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.
Collapse
|
16
|
Ke Z, Zhu Q, Jiang W, Zhou Y, Zhang M, Jiang M, Hong Q. Heterologous expression and exploration of the enzymatic properties of the carbaryl hydrolase CarH from a newly isolated carbaryl-degrading strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112666. [PMID: 34416635 DOI: 10.1016/j.ecoenv.2021.112666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Carbaryl is the representative of carbamate insecticide. As an acetylcholinesterase inhibitor, it poses potential threat to humans and other non-target organisms. Agrobacterium sp. XWY-2, which could grow with carbaryl as the sole carbon source, was isolated and characterized. The carH gene, encoding a carbaryl hydrolase, was cloned from strain XWY-2 and expressed in Escherichia coli BL21 (DE3). CarH was able to hydrolyze carbamate pesticides including carbaryl, carbofuran, isoprocarb, propoxur and fenobucarb efficiently, while it hydrolyzed oxamyl and aldicarb poorly. The optimal pH of CarH was 8.0 and the optimal temperature was 30 ℃. The apparent Km and kcat values of CarH for carbaryl were 38.01 ± 2.81 μM and 0.33 ± 0.01 s-1, respectively. The point mutation experiment demonstrated that His341, His343, His346, His416 and D437 are the key sites for CarH to hydrolyze carbaryl.
Collapse
Affiliation(s)
- Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
17
|
McbG, a LysR Family Transcriptional Regulator, Activates the mcbBCDEF Gene Cluster Involved in the Upstream Pathway of Carbaryl Degradation in Pseudomonas sp. Strain XWY-1. Appl Environ Microbiol 2021; 87:AEM.02970-20. [PMID: 33579686 DOI: 10.1128/aem.02970-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/06/2021] [Indexed: 11/20/2022] Open
Abstract
Although enzyme-encoding genes involved in the degradation of carbaryl have been reported in Pseudomonas sp. strain XWY-1, no regulator has been identified yet. In the mcbABCDEF cluster responsible for the upstream pathway of carbaryl degradation (from carbaryl to salicylate), the mcbA gene is constitutively expressed, while mcbBCDEF is induced by 1-naphthol, the hydrolysis product of carbaryl by McbA. In this study, we identified McbG, a transcriptional activator of the mcbBCDEF cluster. McbG is a 315-amino-acid protein with a molecular mass of 35.7 kDa. It belongs to the LysR family of transcriptional regulators and shows 28.48% identity to the pentachlorophenol (PCP) degradation transcriptional activation protein PcpR from Sphingobium chlorophenolicum ATCC 39723. Gene disruption and complementation studies reveal that mcbG is essential for transcription of the mcbBCDEF cluster in response to 1-naphthol in strain XWY-1. The results of the electrophoretic mobility shift assay (EMSA) and DNase I footprinting show that McbG binds to the 25-bp motif in the mcbBCDEF promoter area. The palindromic sequence TATCGATA within the motif is essential for McbG binding. The binding site is located between the -10 box and the transcription start site. In addition, McbG can repress its own transcription. The EMSA results show that a 25-bp motif in the mcbG promoter area plays an important role in McbG binding to the promoter of mcbG This study reveals the regulatory mechanism for the upstream pathway of carbaryl degradation in strain XWY-1. The identification of McbG increases the variety of regulatory models within the LysR family of transcriptional regulators.IMPORTANCE Pseudomonas sp. strain XWY-1 is a carbaryl-degrading strain that utilizes carbaryl as the sole carbon and energy source for growth. The functional genes involved in the degradation of carbaryl have already been reported. However, the regulatory mechanism has not been investigated yet. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed in strain XWY-1. In this study, we identified a LysR-type transcriptional regulator, McbG, which activates the mcbBCDEF gene cluster responsible for the degradation of 1-naphthol to salicylate and represses its own transcription. The DNA binding site of McbG in the mcbBCDEF promoter area contains a palindromic sequence, which affects the binding of McbG to DNA. These findings enhance our understanding of the mechanism of microbial degradation of carbaryl.
Collapse
|
18
|
Ghatge S, Yang Y, Moon S, Song WY, Kim TY, Liu KH, Hur HG. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123510. [PMID: 32736179 DOI: 10.1016/j.jhazmat.2020.123510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/27/2023]
Abstract
Butralin (N-sec- Butyl-4-tert-butyl-2,6-dinitroaniline) is a highly persistent dinitroaniline herbicide frequently detected in the environment. In this study, butralin-degrading soil bacterium, Sphingopyxis sp. strain HMH was isolated from agricultural soil samples. Based on whole genome sequence analysis of the strain HMH, the gene encoding a nitroreductase NfnB was identified and expressed in Escherichia coli (E. coli), and protein was purified to homogeneity. NfnB is a flavin-nitroreductase, found to be a functional tetramer, composed of subunit molecular mass of 25 kDa. The metabolites from butralin degradation by strain HMH and purified NfnB were identified using ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS), and a novel mechanism of butralin degradation was proposed. NfnB selectively nitro-reduced butralin into N- (sec-Butyl)-4-(tert-butyl)-6-nitrobenzene- 1,2-diamine, followed by formation of 5-(tert-Butyl)-3 -nitrobenzene-1,2-diamine and butanone by N- dealkylation through possible hydroxylation reaction onto the carbon linked amine of the N-(sec-Butyl) moiety. In our study, we could not detect the hydroxylated product 2-(2-Amino-4-tert-butyl-6-nitro- phenylamino)-butan-2-ol) (carbinolamine), instead its Schiff base product (E)-2-(Butan-2-yildeneamino)-5- (tert-butyl)-3-nitroaniline was detected. The release of butanone was further confirmed by derivatization with 2,4- dinitrophenylhydrazine (DNPH) followed by MS analysis. In conclusion, this study explores a novel multi-functional flavin- nitroreductase family enzyme NfnB, catalyzing unique and sequential nitroreduction and N-dealkylation through oxidative hydroxylation of dinitroaniline herbicide butralin.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seonyun Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
19
|
Li N, Peng Q, Yao L, He Q, Qiu J, Cao H, He J, Niu Q, Lu Y, Hui F. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in Rhizorhabdus dicambivorans Ndbn-20. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9287-9298. [PMID: 32786824 DOI: 10.1021/acs.jafc.0c01523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Chlorogentisate is a key intermediate in the catabolism of the herbicide dicamba in R. dicambivorans Ndbn-20. In this study, we identified two gentisate 1,2-dioxygenases (GDOs), DsmD and GtdA, from Ndbn-20. The amino acid sequence similarity between DsmD and GtdA is 51%. Both of them are dimers and showed activities to gentisate and 3-chlorogentisate but not 3,6-dichlorogentisate (3,6-DCGA) or 6-chlorogentisate in vitro. The kcat/Km of DsmD for 3-chlorogentisate was 28.7 times higher than that of GtdA, whereas the kcat/Km of DsmD for gentisate was only one-fourth of that of GtdA. Transcription of dsmD was dramatically induced by 3-chlorogentisate but not gentisate, whereas gtdA was not induced. Disruption of dsmD resulted in a significant decline in the degradation rates of 3-chlorogentisate and dicamba but had no effect on the degradation of gentisate, whereas the result of disruption of gtdA was converse; the disruption of both dsmD and gtdA led to the inability to degrade 3-chlorogentisate and gentisate. This study revealed that 3-chlorogentisate but not gentisate or 3,6-DCGA is the ring-cleavage substrate in the dicamba degradation pathway in R. dicambivorans Ndbn-20; DsmD is specifically responsible for cleavage of 3-chlorogentisate, whereas GtdA is a general GDO involved in the catabolism of various natural aromatic compounds.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Qian Peng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qiuhong Niu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Yunfeng Lu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, Henan 473000, China
| | - Fengli Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
20
|
Coleman NV, Rich DJ, Tang FHM, Vervoort RW, Maggi F. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10399-10410. [PMID: 32786599 DOI: 10.1021/acs.est.0c02070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trifluralin is a widely used dinitroaniline herbicide, which can persist in the environment and has substantial ecotoxicity, especially to aquatic organisms. Trifluralin is very insoluble in water (0.22 mg/L at 20 °C) and highly volatile (vapor pressure of 6.7 mPa at 20 °C); these physicochemical properties determine a large part of its environmental fate, which includes rapid loss from soils if surface-applied, strong binding to soil organic matter, and negligible leaching into water. The trifluralin structure contains a tertiary amino group, two nitro-groups and a trifluoromethyl- group. Despite the strongly xenobiotic character of some of these substituents, biodegradation of trifluralin does occur, and pure cultures of bacteria and fungi capable of partially degrading the molecule either by dealkylation or nitro-group reduction have been identified. There are many unanswered questions about the environmental fate and metabolism of this herbicide; the genes and enzymes responsible for biodegradation are largely unknown, the relative roles of abiotic processes vs growth-linked biodegradation vs cometabolism are unresolved, and the impact of different environmental factors on the rates and extents of biodegradation are not clear. Here, we summarize the relevant literature on the persistence and environmental fate of trifluralin with a focus on biodegradation pathways and mechanisms, and we identify the current major knowledge gaps for future research.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Deborah J Rich
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Fiona H M Tang
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - R Willem Vervoort
- School of Life and Environmental Sciences, Building C81, University of Sydney, Sydney, New South Wales, Australia 2006
| | - Federico Maggi
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| |
Collapse
|
21
|
Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12816-12823. [PMID: 31675231 DOI: 10.1021/acs.jafc.9b04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Bacillus subtilis Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified. LNR shares only 40% identity with PNR and reduces the aromatic ring C-6 nitro group of pendimethalin and both nitro groups of trifluralin, butralin, and oryzalin. The catalytic activities against the four dinitroanilines were much higher for LNR than for PNR. lnr deletion significantly reduced the pendimethalin-reduction activity (60% activity loss), while pnr deletion led to only 30% activity loss, indicating that both LNR and PNR were involved in pendimethalin nitroreduction in strain Y3; however, LNR played the major role. This study facilitates the elucidation of pendimethalin catabolism and provides degrading enzyme resources for the removal of dinitroaniline herbicide residues in environment and agricultural products.
Collapse
Affiliation(s)
- Haiyan Ni
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Na Li
- School of Life Science and Technology , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Meng Qian
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Jian He
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Qing Chen
- College of Life Sciences , Zaozhuang University , Zaozhuang , Shandong 277160 , China
| | - Yunhong Huang
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Long Zou
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zhong-Er Long
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , China
| |
Collapse
|
22
|
Yang J, Bai J, Qu M, Xie B, Yang Q. Biochemical characteristics of a nitroreductase with diverse substrate specificity from Streptomyces mirabilis DUT001. Biotechnol Appl Biochem 2018; 66:33-42. [PMID: 30231196 DOI: 10.1002/bab.1692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022]
Abstract
A nitroreductase-encoded gene from an efficient nitro-reducing bacterium Streptomyces mirabilis DUT001, named snr, was cloned and heterogeneously expressed in Escherichia coli. The purified Streptomyces nitroreductase SNR was a homodimer with an apparent subunit molecular weight of 24 kDa and preferred NADH to NADPH as a cofactor. By enzyme incubation and isothermal calorimetry experiments, flavin mononucleotide (FMN) was found to be the preferred flavin cofactor; the binding process was exothermic and primarily enthalpy driven. The enzyme can reduce multiple nitro compounds and flavins, including antibacterial drug nitrofurazone, priority pollutants 2,4-dinitrotoluene and 2,4,6-trinitrotoluene, as well as key chemical intermediates 3-nitrophthalimide, 4-nitrophthalimide, and 4-nitro-1,8-naphthalic anhydride. Among the substrates tested, the highest activity of kcat(app) /Km(app) (0.234 μM-1 Sec-1 ) was observed for the reduction of FMN. Multiple sequence alignment revealed that the high FMN reduction activity of SNR may be due to the absence of a helix, constituting the entrance to the substrate pocket in other nitroreductases.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jing Bai
- College of Bioscience and Bioengineering, Hebei University of Science & Technology, Hebei, People's Republic of China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Bo Xie
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
23
|
Zhu S, Qiu J, Wang H, Wang X, Jin W, Zhang Y, Zhang C, Hu G, He J, Hong Q. Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1126-1135. [PMID: 30216972 DOI: 10.1016/j.jhazmat.2017.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Carbamate hydrolase is the initial and key enzyme for degradation of carbamate pesticides. In the present study, we report the isolation of a carbaryl-degrading strain Pseudomonas sp. XWY-1, the cloning of its carbaryl hydrolase gene (mcbA) and the characterization of McbA. Strain XWY-1 was able to utilize carbaryl as a sole carbon source and degrade it using 1-naphthol as an intermediate. Transposon mutagenesis identified a mutant of XWY-1M that was unable to hydrolyze carbaryl. The transposon-disrupted gene mcbA was cloned by self-formed adaptor PCR, then expressed in Escherichia coli BL21(DE3) and purified. McbA was able to hydrolyze carbamate pesticides including carbaryl, isoprocarb, fenobucarb, carbofuran efficiently, while it hydrolyzed aldicarb, and propoxur poorly. The optimal pH of McbA was 7.0 and the optimal temperature was 40°C. The apparent Km and kcat values of McbA for carbaryl were 77.67±12.31μM and 2.12±0.10s-1, respectively. Three amino acid residues (His467, His477 and His504) in the predicted polymerase/histidinol phosphatase-like domain were shown to be closely related to the activity of McbA, with His504 being the most important, as a replacement of His504 led to the complete loss of activity. This is the first study to identify key amino acids in McbA.
Collapse
Affiliation(s)
- Shijun Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiang Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wen Jin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yingkun Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chenfei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Gang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|