1
|
Chmykh Y, Nadeau JL. The use of fluorescence lifetime imaging (FLIM) for in situ microbial detection in complex mineral substrates. J Microsc 2024; 294:36-51. [PMID: 38230460 DOI: 10.1111/jmi.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM enabled discrimination of SYTO 9 labelled cells from background, but that the lifetime of SYTO 9 was shorter in cells on minerals than in pure culture under our conditions. Photosynthetic microorganisms were easily observed using both FLIM and confocal. Unlabelled, nonpigmented bacteria showed weak signals that were difficult to distinguish from background when minerals were present, though cellular autofluorescence consistent with NAD(P)H could be seen in pure cultures, and phasor analysis permitted detection on rocks. Gypsum and marble samples showed similar autofluorescence profiles, with little autofluorescence in the yellow-to-red range. Lifetime or time-gated imaging may prove a useful tool for environmental microbiology. LAY DESCRIPTION: The standard method of bacterial enumeration is to label the cells with a fluorescent dye and count them under high-power fluorescence microscopy. However, this can be difficult when the cells are embedded in soil and rock due to fluorescence from the surrounding minerals and dye binding to ambiguous features of the substrate. The use of fluorescence lifetime imaging (FLIM) can disambiguate these signals and allow for improved detection of bacteria in environmental samples.
Collapse
Affiliation(s)
- Yekaterina Chmykh
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
2
|
Neu TR, Kuhlicke U. Matrix glycoconjugate characterization in multispecies biofilms and bioaggregates from the environment by means of fluorescently-labeled lectins. Front Microbiol 2022; 13:940280. [PMID: 36003926 PMCID: PMC9395170 DOI: 10.3389/fmicb.2022.940280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental biofilms represent a complex mixture of different microorganisms. Their identity is usually analyzed by means of nucleic acid-based techniques. However, these biofilms are also composed of a highly complex extracellular matrix produced by the microbes within a particular biofilm system. The biochemical identity of this extracellular matrix remains in many cases an intractable part of biofilms and bioaggregates. Consequently, there is a need for an approach that will give access to the fully hydrated structure of the extracellular matrix or at least a major part of it. A crucial compound of the matrix identified as carbohydrate-based polymers represents major structural and functional constituents. These glycoconjugates can be characterized by using fluorescently-labeled lectins in combination with confocal laser scanning microscopy. The lectin approach is defined previously, as fluorescence lectin barcoding (FLBC) and fluorescence lectin-binding analysis (FLBA), where FLBC is equal to the screening of a particular sample with all the commercially available lectins and FLBA is the actual analysis of the matrix throughout an experiment with a selected panel of lectins. As the application of immune-based techniques in environmental biofilm systems is impossible, the lectin approach is currently the only option for probing lectin-specific glycoconjugates in complex biofilms and bioaggregates. From all the commercially available lectins tested, the lectins such as AAL, HAA, WGA, ConA, IAA, HPA, and LEA showed the highest binding efficiency. Furthermore, 20 of the overall lectins tested showed an intermediate signal intensity, nevertheless very useful for the assessment of matrix glycoconjugates. With the data compiled, we shall virtually shed more light on the dark matter of the extracellular matrix and their 3-dimensional distribution in environmental biofilm systems. The results will be helpful in future studies with a focus on the extracellular matrix glycoconjugates present in environmental microbial communities.
Collapse
|
3
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
4
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
5
|
Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol 2015; 23:233-42. [DOI: 10.1016/j.tim.2014.12.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022]
|
6
|
Aldridge BB, Rhee KY. Microbial metabolomics: innovation, application, insight. Curr Opin Microbiol 2014; 19:90-96. [PMID: 25016173 DOI: 10.1016/j.mib.2014.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
Abstract
Most textbooks depict metabolism as a well understood housekeeping function of cells. However, organisms vary in their metabolic needs according to the specific niches they reside in and selective pressures encountered therein. Recent advances in analytical chemistry have begun to reveal an unexpected diversity in the composition, structure and regulation of metabolic networks. Here, we review key technological developments in the area of metabolism and their impact on our understanding of the fundamental roles of metabolism in cellular physiology.
Collapse
Affiliation(s)
- Bree B Aldridge
- Department of Microbiology & Molecular Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
7
|
Choi H, Tzeranis DS, Cha JW, Clémenceau P, de Jong SJG, van Geest LK, Moon JH, Yannas IV, So PTC. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation. OPTICS EXPRESS 2012. [PMID: 23187477 PMCID: PMC3601594 DOI: 10.1364/oe.20.026219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude.
Collapse
Affiliation(s)
- Heejin Choi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Dimitrios S. Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Jae Won Cha
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | | | | | | | - Joong Ho Moon
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199,
USA
| | - Ioannis V. Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 20139,
USA
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602,
Singapore
| |
Collapse
|
8
|
Wang H, Cai D, Li K, Xu H, Yang L, Zhu N. Effects of different calcium, magnesium, and zinc concentrations supplemented on hepatopancreatic cell proliferation of kuruma prawn, Penaeus japonicus. Biol Trace Elem Res 2012; 148:198-202. [PMID: 22426817 DOI: 10.1007/s12011-012-9366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
The effects of different calcium (Ca(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)) concentrations supplemented on hepatopancreatic cell proliferation of kuruma prawn, Penaeus japonicus was studied. The culture system consists of medium 199 (M 199) supplemented with 0.060 mol/L NaCl, 1.011 g/L glucose, 1,000 UI/ml penicillin, 1,000 μg/ml treptomycin, heat inactivated fetal calf serum (FCS) 20% for primary cell culture and 10% for subculture. The RNA/DNA ratio of the cell cultures was measured. The results show that the cell division of hepatopancreatic cells of P. japonicus was enhanced by the optimal concentration of inorganic salt (Ca(2+), 1.0 g/L; Mg(2+), 5.0 g/L; Zn(2+), 80 μg/L). The hepatopancreatic cell culture system and improved culture conditions described here will be very useful for in vitro experiments to study viruses responsible for infections in shrimp leading to tremendous economic losses.
Collapse
Affiliation(s)
- Hongwei Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Roche Y, Cao-Hoang L, Perrier-Cornet JM, Waché Y. Advanced fluorescence technologies help to resolve long-standing questions about microbial vitality. Biotechnol J 2012; 7:608-19. [PMID: 22253212 DOI: 10.1002/biot.201100344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/11/2011] [Accepted: 12/06/2011] [Indexed: 11/08/2022]
Abstract
Advances in fundamental physical and optical principles applied to novel fluorescence methods are currently resulting in rapid progress in cell biology and physiology. Instrumentation devised in pioneering laboratories is becoming commercially available, and study findings are now becoming accessible. The first results have concerned mainly higher eukaryotic cells but many more developments can be expected, especially in microbiology. Until now, some important problems of cell physiology have been difficult to investigate due to interactions between probes and cells, excretion of probes from cells and the inability to make in situ observations deep within the cell, within tissues and structures. These technologies will enable microbiologists to address these topics. This Review aims at introducing the limits of current physiology evaluation techniques, the principles of new fluorescence technologies and examples of their use in this field of research for evaluating the physiological state of cells in model media, biofilms or tissue environments. Perspectives on new imaging technologies, such as super-resolution imaging and non-linear highly sensitive Raman microscopy, are also discussed. This review also serves as a reference to those wishing to explore how fluorescence technologies can be used to understand basic cell physiology in microbial systems.
Collapse
Affiliation(s)
- Yann Roche
- Laboratory GPMA, IFR92, Université de Bourgogne & AgroSup Dijon, Dijon, France.
| | | | | | | |
Collapse
|
10
|
Bridier A, Tischenko E, Dubois-Brissonnet F, Herry JM, Thomas V, Daddi-Oubekka S, Waharte F, Steenkeste K, Fontaine-Aupart MP, Briandet R. Deciphering Biofilm Structure and Reactivity by Multiscale Time-Resolved Fluorescence Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:333-49. [DOI: 10.1007/978-94-007-0940-9_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
11
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
12
|
Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 2010; 72:1-21. [PMID: 20180852 DOI: 10.1111/j.1574-6941.2010.00837.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|