1
|
Graça JS, Silva JGS, Dias LG, Odorissi Xavier AA, Alves-Filho EG, Pimentel TC, Brito ES, Rodrigues S, Pallone JAL, Mariutti LRB, Mercadante AZ, Bragagnolo N, Sant'Ana AS. Pre-exposure of Lactobacillus acidophilus to stress conditions impacts the metabolites and bioaccessibility of calcium and carotenoids in fermented dairy products. Food Res Int 2025; 200:115526. [PMID: 39779154 DOI: 10.1016/j.foodres.2024.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively. In vitro digestion assays (dialysis and micellization) evaluated the bioaccessibility of Ca and carotenoids. Results showed that fermentation with L. acidophilus, previously exposed to acid, osmotic, and oxidative stress conditions, increased the production of volatiles such as higher alcohols and compounds derived from amino acid catabolism (1-butanol, 1-decanol, 1-nonanol, nonanoic acid, 2-ethyl 1-hexanol, 1-methoxy-2-propanol). Also, when this microorganism was subjected to osmotic and oxidative stress, an increase in the bioaccessibility of Ca in natural fermented milks from 4.1 % to 13.3-15.5 % and in the same products fortified with orange bagasse from 5.3 % to 9.3-10.8 % (when compared to the non-stressed condition) were observed. Conversely, the use of L. acidophilus - non-stressed or subjected to oxidative stress - reduced the bioaccessibility of carotenoids in products containing buriti pulp from 9.6 % to 7.8 % and 4.1 % (in yogurts); and, from 4.1 % to 2.0 % (in fermented milks), when compared to control. Thus, the pre-exposure of probiotics to stress conditions may impact not only the sensory and biochemical characteristics of fermented products, but also the bioaccessibility of nutrients and bioactive compounds.
Collapse
Affiliation(s)
- Juliana S Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Joyce G S Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Laísa G Dias
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Augusta Odorissi Xavier
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Elenilson G Alves-Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | | | - Edy S Brito
- Embrapa Agroindústria Tropical, Rua Dra Sara Mesquita, 2270, Pici, 60511-110 Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | - Juliana A L Pallone
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Lilian R B Mariutti
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriana Z Mercadante
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Neura Bragagnolo
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
3
|
Liu Y, Li M, Guo B, Song Q, Zhang Y, Sun Q, Li M. Analysis of unique volatile organic compounds in "Mianhua" made from wheat planted in arid alkaline land. Food Res Int 2024; 190:114486. [PMID: 38945556 DOI: 10.1016/j.foodres.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Hebei Province's Huanghua "Mianhua" is a province intangible cultural property made from arid alkaline wheat (AAW). This study aims to assess how different soil conditions affect the volatile organic compounds (VOCs) of "Mianhua" and identify distinct VOCs for land type discrimination. These findings will guide future research on AAW products, enhancing their processing and utilization. 51 VOCs in "Mianhua" from wheat samples grown in arid alkaline land and general land in Huanghua were analyzed by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). The result of ANOVA, VOC fingerprint, T test, and OPLS-DA revealed VOCs differences based on planting environments. According to multivariate variance contribution rate analysis, most VOCs were more affected by the variety. Land type significantly influenced (E)-2-heptenal (75.3%), Butanol (60.6%), Propyl acetate (60.0%), ethyl pentanoate (45.5%), and ethyl acetate (44.4%). LDA progressively identified Butanol as the characteristic VOC to distinguish "Mianhua" between it made from AAW and general wheat (GW), with a classification accuracy of 75%.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China
| | - Ming Li
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China
| | - Boli Guo
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China.
| | - Qiaozhi Song
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China
| | - Yingquan Zhang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China
| | - Qianqian Sun
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China
| | - Mengcheng Li
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou) CAAS, Cangzhou, Hebei 061019, China; College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
4
|
Ritter SW, Ensslin S, Gastl MI, Becker TM. Identification of key aroma compounds of faba beans (Vicia faba) and their development during germination - a SENSOMICS approach. Food Chem 2024; 435:137610. [PMID: 37806201 DOI: 10.1016/j.foodchem.2023.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Faba beans are a promising source of valuable plant protein. However, their aroma impression is often a hindrance for the use in a broad range of food products. To develop mitigation strategies, a deeper insight into the faba bean aroma is required. Therefore, for the first time, the SENSOMICS concept was applied. First, 52 aroma active compounds in raw and malted faba beans were identified and semi-quantitatively preselected by aroma extract dilution analysis. Afterwards, the aroma compounds were quantified, odor activity values were calculated, and the 17 prominent odors were selected and used in the reconstitution of the faba bean aroma. Seven statistically significant key aroma compounds 3-methylbutanoic acid, (E)-non-2-enal, hexanal, methional, 3-methylbutanal, sotolon, and 2-methylbutan-1-ol were identified in omission experiments. Finally, their development upon malting was studied. To conclude, by knowing the key aroma compounds, specific mitigation strategies can be developed, which facilitates the broader use of faba beans.
Collapse
Affiliation(s)
- Stefan W Ritter
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany.
| | - Sarah Ensslin
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany
| | - Martina I Gastl
- Technical University Munich, Research Center Weihenstephan for Brewing and Food Quality, 85354 Freising, Germany.
| | - Thomas M Becker
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany.
| |
Collapse
|
5
|
Jacques C, Bacqueville D, Jamin EL, Maitre M, Delsol C, Simcic-Mori A, Bianchi P, Noustens A, Jouanin I, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics approach to understand the impact of sun exposure on an in vitro skin ecosystem and evaluate a new broad-spectrum sunscreen. Photochem Photobiol 2024; 100:477-490. [PMID: 37485720 DOI: 10.1111/php.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Daniel Bacqueville
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Martine Maitre
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | - Aimée Simcic-Mori
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Pascale Bianchi
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
6
|
Zhu R, Yuan Y, Qi R, Liang J, Shi Y, Weng H. Quantitative profiling of carboxylic compounds by gas chromatography-mass spectrometry for revealing biomarkers of diabetic kidney disease. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123930. [PMID: 38029665 DOI: 10.1016/j.jchromb.2023.123930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Diabetic kidney disease (DKD), a common microvascular complication of diabetes, currently lacks specific diagnostic indicators and therapeutic targets, resulting in miss of early intervention. To profile metabolic conditions in complex and precious biological samples and screen potential biomarkers for DKD diagnosis and prognosis, a rapid, convenient and reliable quantification method for carboxyl compounds by gas chromatography-mass spectrometry (GC-MS) was established with isobutyl chloroformate derivatization. The derivatives were extracted with hexane, injected into GC-MS and quantified with selected ion monitoring mode. This method showed excellent linearity(R2 > 0.99), good recoveries (81.1%-115.5%), good repeatability (RSD < 20%) and sensitivity (LODs: 0.20-499.90 pg, LOQs: 2.00-1007.00 pg). Among the 37 carboxyl compounds analyzed, 12 metabolites in short-chain fatty acids (SCFAs) metabolism pathway and amino acid metabolism pathway were linked with DKD development and among them, 6 metabolites were associated with both development and prognosis of DKD in mice. In conclusion, a reliable, convenient and sensitive method based on isobutyl chloroformate derivatization and GC-MS analysis is established and successfully applied to quantify 37 carboxyl compounds in biological samples of mice and 12 potential biomarkers for DKD development and prognosis are screened.
Collapse
Affiliation(s)
- Rongrong Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Yuan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rourou Qi
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianying Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yan Shi
- Institute for Clinical Trials of drug, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Hongbo Weng
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Park MK, Hong CP, Kim BS, Lee DY, Kim YS. Integrated-Omics Study on the Transcriptomic and Metabolic Changes of Bacillus licheniformis, a Main Microorganism of Fermented Soybeans, According to Alkaline pH and Osmotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14379-14389. [PMID: 37737871 DOI: 10.1021/acs.jafc.3c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Bacillus licheniformis has been widely utilized in the food industry as well as various agricultural industries. In particular, it is a main microorganism of fermented soybeans. In this study, the changes of the metabolome and transcriptome of B. licheniformis KACC15844, which had been isolated from fermented soybeans, were investigated depending on alkaline pH (BP) and a high salt concentration (BS) using an integrated-omics technology, focusing on leucine metabolism. Overall, carbohydrate (glycolysis, sugar transport, and overflow) and amino acid (proline, glycine betaine, and serine) metabolisms were strongly associated with BS, while fatty acid metabolism, malate utilization, and branched-chain amino acid-derived volatiles were closely related to BP, in both gene and metabolic expressions. In particular, in leucine metabolism, the formation of 3-methylbutanoic acid, which has strong cheesy odor notes, was markedly increased in BP compared to the other samples. This study provided information on how specific culture conditions can affect gene expressions and metabolite formations in B. licheniformis using an integrated-omics approach.
Collapse
Affiliation(s)
- Min Kyung Park
- Food Processing Research Group, Korean Food Research Institute, Wanju 55365, Republic of Korea
| | - Chang Pyo Hong
- Theragen Etex Bio Institute, Suwon-si 13488, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Camprini L, Pellegrini M, Comi G, Iacumin L. Effects of anaerobic and respiratory adaptation of Lacticaseibacillus casei N87 on fermented sausages production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1044357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Lacticaseibacillus casei N87 was used as starter culture for the production of fermented sausages. The strain was cultivated in anaerobic (A) and respiratory (growth in presence of oxygen and supplementation with haeme and menaquinone in the growth medium; R) conditions. Control without the starter culture inoculation and with the addition of 150 mg/kg of nitrate was also included. The effect on physico-chemical parameters (pH, Aw, weight loss, and color), microbial population, volatilome, proteolysis as well as the survival of the strain was evaluated during 90 days of ripening. Q-PCR and DGGE-PCR analyses demonstrated the ability of the strain used in this study to adapt to this environment and carry out the sausage's fermentation process. The inoculation of the strain did not have any effect on the Aw values, which decreased similarly in the different samples whereas the pH was lower in A samples (5.2) and the weight loss in R samples (2.5% less than the others). The color parameters of the samples inoculated with the starter cultures were comparable to those of the control added with nitrate. The concentration of aldehydes that usually are identified as marker of oxidation processes was similar in the samples inoculated with the starter cultures adapted under respiratory conditions and in the control. On the contrary, a higher level was detected in the samples inoculated with the starter cultivated under anaerobic conditions. The proteolysis that occurred during the ripening indicates the differentiation of the A samples from the others. Nonetheless, the volatile profiles of the inoculated fermented sausages were similar. The study demonstrated that aerobic adaptation of Lcb. casei N87 starter culture gave similar color parameters and amounts of aldehydes in sausages fermentations without nitrate compared to conventional fermentations with nitrate.
Collapse
|
9
|
Multi-Strain and -Species Investigation of Volatile Metabolites Emitted from Planktonic and Biofilm Candida Cultures. Metabolites 2022; 12:metabo12050432. [PMID: 35629935 PMCID: PMC9146923 DOI: 10.3390/metabo12050432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Candida parapsiliosis is a prevalent neonatal pathogen that attains its virulence through its strain-specific ability to form biofilms. The use of volatilomics, the profiling of volatile metabolites from microbes is a non-invasive, simple way to identify and classify microbes; it has shown great potential for pathogen identification. Although C. parapsiliosis is one of the most common clinical fungal pathogens, its volatilome has never been characterised. In this study, planktonic volatilomes of ten clinical strains of C. parapsilosis were analysed, along with a single strain of Candida albicans. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry were employed to analyse the samples. Species-, strain-, and media- influences on the fungal volatilomes were investigated. Twenty-four unique metabolites from the examined Candida spp. (22 from C. albicans; 18 from C. parapsilosis) were included in this study. Chemical classes detected across the samples included alcohols, fatty acid esters, acetates, thiols, sesquiterpenes, and nitrogen-containing compounds. C. albicans volatilomes were most clearly discriminated from C. parapsilosis based on the detection of unique sesquiterpene compounds. The effect of biofilm formation on the C. parapsilosis volatilomes was investigated for the first time by comparing volatilomes of a biofilm-positive strain and a biofilm-negative strain over time (0–48 h) using a novel sampling approach. Volatilomic shifts in the profiles of alcohols, ketones, acids, and acetates were observed specifically in the biofilm-forming samples and attributed to biofilm maturation. This study highlights species-specificity of Candida volatilomes, and also marks the clinical potential for volatilomics for non-invasively detecting fungal pathogens. Additionally, the range of biofilm-specificity across microbial volatilomes is potentially far-reaching, and therefore characterising these volatilomic changes in pathogenic fungal and bacterial biofilms could lead to novel opportunities for detecting severe infections early.
Collapse
|
10
|
Wang Y, Zhang C, Liu F, Jin Z, Xia X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit Rev Food Sci Nutr 2022; 63:5841-5855. [PMID: 35014569 DOI: 10.1080/10408398.2021.2025035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.
Collapse
Affiliation(s)
- Yingyu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| |
Collapse
|
11
|
Rahardjo YP, Syamsu K, Rahardja S, Samsudin, Mangunwijaya D. Impact of controlled fermentation on the volatile aroma of roasted cocoa. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.27020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The study of controlled methods of cocoa fermentation on a small scale is important to assess the maintenance of heat generated in the last days of fermentation. The research aimed to study the impact of spontaneous fermentation in controlled fermentation systems on the quality and acceptability of fermented cocoa beans. A 2×3 complete factorial design used different controlled fermentation systems (jacket system, solar heater and wooden box) and pulp reduction as variables. Samples were analyzed for fermentation index and volatile aroma composition profile using Headspace-Solid Phase Microextraction (HS-SPME) and Gas Chromatography-Mass Spectrometry (GC-MS). The profile of volatile compounds is evaluated for the studied variables using a multivariate Principal Components Analysis (PCA). The results showed increasing fermentation times in the jacket system seeing that it raised the fermentation rate and accelerated it to five days of fermentation combined with pulp reduction. The PCA analysis showed differences in the chemical composition of volatile compounds that were mainly associated with the reduction of the pulping process than the type of controlled system in four days of fermentation.
Collapse
Affiliation(s)
- Yogi Purna Rahardjo
- IPB University, Indonesia; Central Sulawesi Assessment Institute for Agricultural, Indonesia
| | | | | | - Samsudin
- Indonesian Industrial and Beverage Crops Research Institute, Indonesia
| | | |
Collapse
|
12
|
Rogalski E, Ehrmann MA, Vogel RF. Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis. Microbiol Res 2020; 243:126625. [PMID: 33129664 DOI: 10.1016/j.micres.2020.126625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
13
|
Performance of Lactobacillus paracasei 90 as an adjunct culture in soft cheese under cold chain interruption. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Blajman JE, Vinderola G, Cuatrin A, Lingua MS, Páez RB. Technological variables influencing the growth and stability of a silage inoculant based on spray-dried lactic acid bacteria. J Appl Microbiol 2020; 129:1486-1496. [PMID: 32544979 DOI: 10.1111/jam.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the influence of different culture media and fermentation conditions on growth performance and viability of three lactic acid bacteria (LAB) strains with potential as silage inoculants, and to optimize spray-drying in order to enhance survival to dehydration and storage stability. METHODS AND RESULTS In house-formulated MRS was a suitable low-cost culture medium for Lactobacillus plantarum Hv75, Pediococcus acidilactici 3903 and L. buchneri B463. Uncontrolled pH biomass production conferred enhanced stability during storage at 4°C after spray-drying. The use of whey protein concentrate 35 (WPC)-maltodextrin (M) as matrix, inlet temperature of 145-150°C and air flow rate of 601 l h-1 was adequate for the production of dehydrated LAB. According to the desirability function, at this optimized condition, moisture content, yield and solubility were predicted to be 3·96, 73·68 and 90·36% respectively. Those conditions also showed a decrease of 0·855 log CFU per gram after drying, no loss in viability at 4°C for 6 months and 1 log CFU per gram reduction at 25°C. CONCLUSIONS Stable and economically feasible dehydrated LAB cultures were obtained using alternative culture media, fermentation under uncontrolled pH and optimizing spray-drying process conditions through the desirability function method. SIGNIFICANCE AND IMPACT OF THE STUDY Our results can be utilized for efficient production and commercialization of several dry LAB.
Collapse
Affiliation(s)
- J E Blajman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| | - G Vinderola
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - A Cuatrin
- Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| | - M S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - R B Páez
- Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| |
Collapse
|
15
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
16
|
Milanowski M, Monedeiro F, Złoch M, Ratiu IA, Pomastowski P, Ligor T, De Martinis BS, Buszewski B. Profiling of VOCs released from different salivary bacteria treated with non-lethal concentrations of silver nitrate. Anal Biochem 2019; 578:36-44. [PMID: 31085164 DOI: 10.1016/j.ab.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023]
Abstract
Considering the shortcomings related to antibiotics usage, the introduction of other bacteriostatic and bactericidal agents that present synergetic effects or standalone properties is urgently needed. AgNO3 is an important bactericidal agent, which imparts various functions on bacteria dependent on its concentration. Therefore, an understanding of its mechanisms of action in infinitesimal concentrations plays an important role which can ultimately lead to AgNO3 involvement in the pharmaceutical industry. The monitoring of VOC (volatile organic compound) profiles emitted by bacteria is a simple method to assess changes occurring in bacterial metabolism. In this study, VOCs of Hafnia alvei, Pseudomonas luteola and Staphylococcus warneri cultures were analyzed both in the absence and in the presence of three concentrations of AgNO3. Headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS) was employed for extraction and analysis. After supplementation with AgNO3, changes in the emitted fingerprints were investigated. Odorants associated with mouth-related and systemic diseases, like dimethyl trisulfide, indole (halitosis) and 2-hexanone (celiac disease), were also affected by addition of AgNO3. Statistical tests proved discrimination between obtained profiles with more that 90% variability. Moreover, physiological states of bacteria after dosage with various concentration of stressing agent were investigated and explained by the mechanisms of action.
Collapse
Affiliation(s)
- Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland
| | - Fernanda Monedeiro
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland; Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, CEP 14040-901, Ribeirão Preto, Brazil
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland
| | - Ileana-Andreea Ratiu
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland; (d)Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland
| | - Bruno S De Martinis
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, CEP 14040-901, Ribeirão Preto, Brazil
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str, 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str, 87-100, Toruń, Poland.
| |
Collapse
|
17
|
Characterization and Transcriptome Studies of Autoinducer Synthase Gene from Multidrug Resistant Acinetobacter baumannii Strain 863. Genes (Basel) 2019; 10:genes10040282. [PMID: 30965610 PMCID: PMC6523755 DOI: 10.3390/genes10040282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
Collapse
|
18
|
Response of neutrophilic Shewanella violacea to acid stress: growth rate, organic acid production, and gene expression. Extremophiles 2019; 23:319-326. [DOI: 10.1007/s00792-019-01083-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
|
19
|
Saa DLT, Nissen L, Gianotti A. Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Res Int 2019; 119:510-516. [PMID: 30884683 DOI: 10.1016/j.foodres.2019.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Metabolomic approaches applied to fermented foods are at the state of the science and represent a robust and reliable approach to identify, quantify and characterise the biochemical profiles of raw materials and transformed products. The outcomes so far obtained are cornerstones to understand mainly nutritional and sensorial inherent features. Formulations of new bakery products with increased nutritional values is trending the market, but sensorial attributes still need to be improved to reach a wider audience. The present work describes the application of gas chromatography-mass spectrometry (GC-MS) and electronic nose analyses, to investigate over the volatilome of different bakery products, obtained from mature and immature grains (KAMUT® khorasan and durum wheat) and transformed by a sourdough made of Lactobacillus spp. and Saccharomyces cerevisiae. From the recipient results has emerged that the sensors used can distinguish the KAMUT® khorasan doughs fermented industrially at the fully ripe stage, the same doughs at the milky stage and KAMUT® khorasan sourdough at the fully ripe stage. Electronic nose allowed discriminating between different types of flours and GC-MS indicated the volatilome of sourdough KAMUT® khorasan case as the most promising. Thus, the combination of different independent variables in the bread process to improve the sensorial quality of the product, when is backed by metabolomics, represents an effective approach to study, characterise and exploit the sensorial quality of breads.
Collapse
Affiliation(s)
- Danielle Laure Taneyo Saa
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy.
| | - Lorenzo Nissen
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Via Fanin, 50, 40127 Bologna, Italy
| |
Collapse
|
20
|
Li H, Mei X, Liu B, Xie G, Ren N, Xing D. Quantitative proteomic analysis reveals the ethanologenic metabolism regulation of Ethanoligenens harbinense by exogenous ethanol addition. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:166. [PMID: 31297154 PMCID: PMC6598285 DOI: 10.1186/s13068-019-1511-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND H2-ethanol-coproducing bacteria, as primary fermenters, play important roles in the microbiome of bioreactors for bioenergy production from organic wastewater or solid wastes. Ethanoligenens harbinense YUAN-3 is an anaerobic ethanol-H2-fermenting bacterium. Ethanol is one of the main end-products of strain YUAN-3 that influence its fermentative process. Until recently, the molecular mechanism of metabolic regulation in strain YUAN-3 during ethanol accumulation has still been unclear. This study aims to elucidate the metabolic regulation mechanisms in strain YUAN-3, which contributes to effectively shape the microbiome for biofuel and bioenergy production from waste stream. RESULTS This study reports that ethanol stress altered the distribution of end-product yields in the H2-ethanol-coproducing Ethanoligenens harbinense strain YUAN-3. Decreasing trends of hydrogen yield from 1888.6 ± 45.8 to 837 ± 64.7 mL L-1 and acetic acid yield from 1767.7 ± 45 to 160.6 ± 44.7 mg L-1 were observed in strain YUAN-3 with increasing exogenous ethanol (0 mM-200 mM). However, the ethanol yield of strain YUAN-3 increased by 15.1%, 30.1%, and 27.4% in 50 mM, 100 mM, and 200 mM ethanol stress, respectively. The endogenous ethanol accounted for 96.1% (w/w) in liquid end-products when exogenous ethanol of 200 mM was added. The molar ratio of ethanol to acetic acid increased 14 times (exogenous ethanol of 200 mM) compared to the control. iTRAQ-based quantitative proteomic analysis indicated that 263 proteins of strain YUAN-3 were differentially expressed in 50 mM, 100 mM, and 200 mM of exogenous ethanol. These proteins are mainly involved in amino acid transport and metabolism, central carbon metabolism, and oxidative stress response. CONCLUSION These differentially expressed proteins play important roles in metabolic changes necessary for growth and survival of strain YUAN-3 during ethanol stress. The up-regulation of bifunctional acetaldehyde-CoA/alcohol dehydrogenase (ADHE) was the main reason why ethanol production was enhanced, while hydrogen gas and acetic acid yields declined in strain YUAN-3 during ethanol stress. This study also provides a new approach for the enhancement of ethanologenesis by H2-ethanol-coproducing bacteria through exogenous ethanol addition.
Collapse
Affiliation(s)
- Huahua Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Xiaoxue Mei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| |
Collapse
|
21
|
Liang S, Gao D, Liu H, Wang C, Wen J. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions. J Ind Microbiol Biotechnol 2018; 45:681-696. [PMID: 29808292 DOI: 10.1007/s10295-018-2048-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/19/2018] [Indexed: 11/29/2022]
Abstract
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, D-lactate has attracted much attention. To improve D-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest D-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of D-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC-MS and LC-MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with D-lactate production. Moreover, a quantitative iTRAQ-LC-MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on D-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved D-lactate production. These findings provide the first omics view of cell growth and D-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of D-lactate.
Collapse
Affiliation(s)
- Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dacheng Gao
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian, 116000, People's Republic of China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
22
|
Ly S, Mith H, Tarayre C, Taminiau B, Daube G, Fauconnier ML, Delvigne F. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea) on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS. Front Microbiol 2018; 9:894. [PMID: 29867806 PMCID: PMC5951977 DOI: 10.3389/fmicb.2018.00894] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected.
Collapse
Affiliation(s)
- Sokny Ly
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.,Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Hasika Mith
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Cédric Tarayre
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Bernard Taminiau
- Food Science Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health, University of Liège, Liège, Belgium
| | - Georges Daube
- Food Science Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health, University of Liège, Liège, Belgium
| | - Marie-Laure Fauconnier
- General and Organic Chemistry, Université de Liège - Gembloux Agro-BioTech, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
23
|
High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech 2018; 8:213. [PMID: 29651378 DOI: 10.1007/s13205-018-1232-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/03/2017] [Indexed: 10/17/2022] Open
Abstract
Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH)2. The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.
Collapse
|
24
|
Dongmo Nsogning S, Kollmannsberger H, Fischer S, Becker T. Exploration of high-gravity fermentation to improve lactic acid bacteria performance and consumer's acceptance of malt wort-fermented beverages. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sorelle Dongmo Nsogning
- Institute of Brewing and Beverage Technology; TUM School of Life Sciences Weihenstephan; Technical University of Munich; Weihenstephaner Steig 20 D-85354 Freising Germany
| | - Hubert Kollmannsberger
- Institute of Brewing and Beverage Technology; TUM School of Life Sciences Weihenstephan; Technical University of Munich; Weihenstephaner Steig 20 D-85354 Freising Germany
| | - Susann Fischer
- Institute of Brewing and Beverage Technology; TUM School of Life Sciences Weihenstephan; Technical University of Munich; Weihenstephaner Steig 20 D-85354 Freising Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology; TUM School of Life Sciences Weihenstephan; Technical University of Munich; Weihenstephaner Steig 20 D-85354 Freising Germany
| |
Collapse
|
25
|
Toh M, Liu SQ. Influence of commercial inactivated yeast derivatives on the survival of probiotic bacterium Lactobacillus rhamnosus HN001 in an acidic environment. AMB Express 2017; 7:156. [PMID: 28747041 PMCID: PMC5524659 DOI: 10.1186/s13568-017-0456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/26/2022] Open
Abstract
This study evaluated the influence of three inactivated yeast derivatives (IYDs) used in wine production, namely OptiRed®, OptiWhite® and Noblesse®, on the viability of the probiotic strain Lactobacillus rhamnosus HN001 in an acidic environment. Addition of the IYDs at 3 g/L significantly enhanced the survival of the probiotic bacteria by 2.75–4.05 log cycles after 10-h exposure in a pH 3.0 buffer. Acid stress assay with IYD components obtained after centrifugation and filtration revealed that water-soluble compounds were responsible for improving the acid tolerance of L. rhamnosus HN001 for all three preparations. Differences in protective effect amongst the IYDs on L. rhamnosus HN001 were observed when permeates and retentates of the water-soluble extracts, obtained through ultrafiltration with a 2 kDa membrane, were assayed against the lactic acid bacterium. Chemical analysis of the water-soluble components suggests that low molecular weight polysaccharides, specific free amino acids and/or antioxidants in the 2 kDa permeates could have contributed to the enhanced survival of L. rhamnosus HN001 during acid stress. The contrast amongst the 2 kDa retentates’ viability enhancing property may have been attributed to the differences in size and structure of the higher molecular weight carbohydrates and proteins, as the survival of the probiotic did not relate to the concentration of these compounds. These results suggests that oenological IYDs could potentially be applied to probiotic foods for enhancing the acid tolerance of the beneficial microorganisms, and consequently prolonging the shelf life of these products.
Collapse
|
26
|
Thitiprasert S, Kodama K, Tanasupawat S, Prasitchoke P, Rampai T, Prasirtsak B, Tolieng V, Piluk J, Assabumrungrat S, Thongchul N. A homofermentative Bacillus sp. BC-001 and its performance as a potential l-lactate industrial strain. Bioprocess Biosyst Eng 2017; 40:1787-1799. [DOI: 10.1007/s00449-017-1833-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022]
|
27
|
Wu C, Huang J, Zhou R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol 2017; 43:393-404. [PMID: 28502225 DOI: 10.1080/1040841x.2016.1179623] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.
Collapse
Affiliation(s)
- Chongde Wu
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Jun Huang
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Rongqing Zhou
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| |
Collapse
|
28
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
29
|
Van Kerrebroeck S, Bastos FCC, Harth H, De Vuyst L. A low pH does not determine the community dynamics of spontaneously developed backslopped liquid wheat sourdoughs but does influence their metabolite kinetics. Int J Food Microbiol 2016; 239:54-64. [DOI: 10.1016/j.ijfoodmicro.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022]
|
30
|
Ferri M, Serrazanetti DI, Tassoni A, Baldissarri M, Gianotti A. Improving the functional and sensorial profile of cereal-based fermented foods by selecting Lactobacillus plantarum strains via a metabolomics approach. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.08.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
32
|
Nsogning Dongmo S, Procopio S, Sacher B, Becker T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Combination of transglutaminase and sourdough on gluten-free flours to improve dough structure. Amino Acids 2016; 48:2453-65. [PMID: 27188419 DOI: 10.1007/s00726-016-2258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of this work was to evaluate the effects of microbial transglutaminase (mTG) and sourdough on gluten-free (GF) flours. Besides deamidation and incorporation of amines, mTG catalyses protein cross-links, modifying dough structure. Sourdough from lactic acid bacteria (LAB) and yeast modifies dough protein composition, determining proteolysis, which induce the formation of aroma precursor metabolites. The chemical-physical interactions of volatile molecules with various constituents of the matrix affect the retention of aroma compounds. Here, the effect on volatile molecule profiles and on protein networks formation after mTG treatment in sourdoughs obtained with four GF flours belonging to cereals, pseudo-cereals and legumes (rice, corn, amaranth and lentil) was investigated. Sourdough was prepared with a two-step fermentation using Lactobacillus sanfrancisciensis (LSCE1) and Candida milleri (PFL44), then mTG was added after 21 h of fermentation at increasing levels. The results showed that mTG had the capacity to modify GF flour proteins and improve protein networks formation, involving mainly the prolamin protein fraction. This is particularly relevant for the production of GF backed goods generally lacking of technological, structural and sensorial features compared with products obtained with wheat flour sourdough fermentation. Interestingly, mTG treatment of sourdough affected also the volatile composition and indeed possibly the final organoleptic properties of the products.
Collapse
|
34
|
Tofalo R, Patrignani F, Lanciotti R, Perpetuini G, Schirone M, Di Gianvito P, Pizzoni D, Arfelli G, Suzzi G. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts. Front Microbiol 2016; 7:610. [PMID: 27199939 PMCID: PMC4848713 DOI: 10.3389/fmicb.2016.00610] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored autochthonous strains to impart the specific characteristics of a given wine which are an expression of a specific terroir.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Maria Schirone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Paola Di Gianvito
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Daniel Pizzoni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giuseppe Arfelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| |
Collapse
|
35
|
To Modulate Survival under Secondary Stress Conditions, Listeria monocytogenes 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. Appl Environ Microbiol 2015; 82:1126-1135. [PMID: 26637594 DOI: 10.1128/aem.03218-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a saprophytic bacterium that thrives in diverse environments and causes listeriosis via ingestion of contaminated food. RsbX, a putative sigma B (σ(B)) regulator, is thought to maintain the ready state in the absence of stress and reset the bacterium to the initial state in the poststress stage in Bacillus subtilis. We wondered whether RsbX is functional in L. monocytogenes under different stress scenarios. Genetic deletion and complementation of the rsbX gene were combined with survival tests and transcriptional and translational analyses of σ(B) expression in response to stresses. We found that deletion of rsbX increased survival under secondary stress following recovery of growth after primary stress or following stationary-phase culturing. The ΔrsbX mutant had higher expression of σ(B) than its parent strain in the recovery stage following primary sodium stress and in stationary-phase cultures. Apparently, increased σ(B) expression had contributed to improved survival in the absence of RsbX. There were no significant differences in survival rates or σ(B) expression levels in response to primary stresses between the rsbX mutant and its parent strain during the exponential phase. Therefore, we provide clear evidence that RsbX is a negative regulator of L. monocytogenes σ(B) during the recovery period after a primary stress or in the stationary phase, thus affecting its survival under secondary stress.
Collapse
|
36
|
Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. Int J Food Microbiol 2015; 215:161-70. [DOI: 10.1016/j.ijfoodmicro.2015.09.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 11/21/2022]
|
37
|
Honoré AH, Aunsbjerg SD, Ebrahimi P, Thorsen M, Benfeldt C, Knøchel S, Skov T. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal Bioanal Chem 2015; 408:83-96. [PMID: 26573172 DOI: 10.1007/s00216-015-9103-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations form the basis for the antifungal effect, i.e., the composition of the exometabolome. To build a more comprehensive view of the chemical changes induced by bacterial fermentation and the effects on mold growth, a strategy for correlating the exometabolomic profiles with mold growth was applied. The antifungal properties were assessed by measuring mold growth of two Penicillium strains on cell-free ferments of three strains of Lactobacillus paracasei pre-fermented in a chemically defined medium. Exometabolomic profiling was performed by reversed-phase liquid chromatography in combination with mass spectrometry in electrospray positive and negative modes. By multivariate data analysis, the three strains of Lb. paracasei were readily distinguished by the relative difference of their exometabolomes. The relative differences correlated with the relative growth of the two Penicillium strains. Metabolic footprinting proved to be a supplement to bioassay-guided fractionation for investigation of antifungal properties of bacterial ferments. Additionally, three previously identified and three novel antifungal metabolites from Lb. paracasei and their potential precursors were detected and assigned using the strategy.
Collapse
Affiliation(s)
- Anders H Honoré
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark. .,Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Stina D Aunsbjerg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Parvaneh Ebrahimi
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Michael Thorsen
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | - Connie Benfeldt
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | - Susanne Knøchel
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Thomas Skov
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
38
|
Serrazanetti DI, Patrignani F, Russo A, Vannini L, Siroli L, Gardini F, Lanciotti R. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids. Front Microbiol 2015; 6:1105. [PMID: 26528258 PMCID: PMC4600958 DOI: 10.3389/fmicb.2015.01105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.
Collapse
Affiliation(s)
- Diana I Serrazanetti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy
| | - Francesca Patrignani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Alessandra Russo
- Servizio Sanitario Regionale, Azienda Unità Sanitaria Locale di Imola Imola, Italy
| | - Lucia Vannini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Lorenzo Siroli
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Rosalba Lanciotti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| |
Collapse
|
39
|
Nancib A, Nancib N, Boubendir A, Boudrant J. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus. Braz J Microbiol 2015; 46:893-902. [PMID: 26413076 PMCID: PMC4568860 DOI: 10.1590/s1517-838246320131067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/09/2014] [Indexed: 11/22/2022] Open
Abstract
The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.
Collapse
Affiliation(s)
- Aicha Nancib
- Laboratory of Applied Microbiology, Ferhat Abbas University, Setif, Algeria
| | - Nabil Nancib
- Laboratory of Applied Microbiology, Ferhat Abbas University, Setif, Algeria
| | | | - Joseph Boudrant
- Laboratory Reactions and Chemical Engineering, University of Lorraine, Vandoeuvre Cedex, France
| |
Collapse
|
40
|
Siroli L, Patrignani F, Serrazanetti DI, Tabanelli G, Montanari C, Tappi S, Rocculi P, Gardini F, Lanciotti R. Efficacy of natural antimicrobials to prolong the shelf-life of minimally processed apples packaged in modified atmosphere. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
The pH-dependent expression of the urease operon in Streptococcus salivarius is mediated by CodY. Appl Environ Microbiol 2014; 80:5386-93. [PMID: 24951785 DOI: 10.1128/aem.00755-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Urease gene expression in Streptococcus salivarius 57.I, a strain of one of the major alkali producers in the mouth, is induced by acidic pH and excess amounts of carbohydrate. Expression is controlled primarily at the transcriptional level from a promoter, pureI. Recent sequencing analysis revealed a CodY box located 2 bases 5' to the -35 element of pureI. Using continuous chemostat culture, transcription from pureI was shown to be repressed by CodY, and at pH 7 the repression was more pronounced than that in cells grown at pH 5.5 under both 20 and 100 mM glucose. The direct binding of CodY to pureI was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP)-quantitative real-time PCR (qPCR). The result of ChIP-qPCR also confirmed that the regulation of CodY is indeed modulated by pH and the binding of CodY at neutral pH is further enhanced by a limited supply of glucose (20 mM). In the absence of CodY, the C-terminal domain of the RNA polymerase (RNAP) α subunit interacted with the AT tracks within the CodY box, indicating that CodY and RNAP compete for the same binding region. Such regulation could ensure optimal urease expression when the enzyme is most required, i.e., at an acidic growth pH with an excess amount of carbon nutrients.
Collapse
|
42
|
De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, Gozzi G, Serrazanetti D, Dalfino G, Gobbetti M, Gesualdo L. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 2014; 9:e99006. [PMID: 24922509 PMCID: PMC4055632 DOI: 10.1371/journal.pone.0099006] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/09/2014] [Indexed: 12/17/2022] Open
Abstract
This study aimed at investigating the fecal microbiota, and the fecal and urinary metabolome of non progressor (NP) and progressor (P) patients with immunoglobulin A nephropathy (IgAN). Three groups of volunteers were included in the study: (i) sixteen IgAN NP patients; (ii) sixteen IgAN P patients; and (iii) sixteen healthy control (HC) subjects, without known diseases. Selective media were used to determine the main cultivable bacterial groups. Bacterial tag-encoded FLX-titanium amplicon pyrosequencing of the 16S rDNA and 16S rRNA was carried out to determine total and metabolically active bacteria, respectively. Biochrom 30 series amino acid analyzer and gas-chromatography mass spectrometry/solid-phase microextraction (GC-MS/SPME) analyses were mainly carried out for metabolomic analyses. As estimated by rarefaction, Chao and Shannon diversity index, the lowest microbial diversity was found in P patients. Firmicutes increased in the fecal samples of NP and, especially, P patients due to the higher percentages of some genera/species of Ruminococcaceae, Lachnospiraceae, Eubacteriaceae and Streptococcaeae. With a few exceptions, species of Clostridium, Enterococcus and Lactobacillus genera were found at the highest levels in HC. Bacteroidaceae, Porphyromonadaceae, Prevotellaceae and Rikenellaceae families differed among NP, P and HC subjects. Sutterellaceae and Enterobacteriaceae species were almost the highest in the fecal samples of NP and/or P patients. Compared to HC subjects, Bifidobacterium species decreased in the fecal samples of NP and P. As shown by multivariate statistical analyses, the levels of metabolites (free amino acids and organic volatile compounds) from fecal and urinary samples markedly differentiated NP and, especially, P patients.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- * E-mail:
| | - Eustacchio Montemurno
- Department of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy
| | - Maria Piccolo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gabriella Lauriero
- Department of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy
| | - Valentina Maranzano
- Department of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Gozzi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Diana Serrazanetti
- Inter-departmental Centre for Industrial Agri-Food Research, University of Cesena, Cesena, Italy
| | - Giuseppe Dalfino
- Department of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology Unit - University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
43
|
The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress. Appl Environ Microbiol 2014; 80:4114-25. [PMID: 24795368 DOI: 10.1128/aem.00367-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a result of its strong adaptation to wheat and rye sourdoughs, Lactobacillus sanfranciscensis has the smallest genome within the genus Lactobacillus. The concomitant absence of some important antioxidative enzymes and the inability to synthesize glutathione suggest a role of cystine transport in maintenance of an intracellular thiol balance. Diamide [synonym 1,1'-azobis(N,N-dimethylformamide)] disturbs intracellular and membrane thiol levels in oxidizing protein thiols depending on its initial concentration. In this study, RNA sequencing was used to reveal the transcriptional response of L. sanfranciscensis DSM 20451(T) (wild type [WT]) and its ΔtcyB mutant with a nonfunctional cystine transporter after thiol stress caused by diamide. Along with the different expression of genes involved in amino acid starvation, pyrimidine synthesis, and energy production, our results show that thiol stress in the wild type can be compensated through activation of diverse chaperones and proteases whereas the ΔtcyB mutant shifts its metabolism in the direction of survival. Only a small set of genes are significantly differentially expressed between the wild type and the mutant. In the WT, mainly genes which are associated with a heat shock response are upregulated whereas glutamine import and synthesis genes are downregulated. In the ΔtcyB mutant, the whole opp operon was more highly expressed, as well as a protein which probably includes enzymes for methionine transport. The two proteins encoded by spxA and nrdH, which are involved in direct or indirect oxidative stress responses, are also upregulated in the mutant. This work emphasizes that even in the absence of definitive antioxidative enzymes, bacteria with a small genome and a high frequency of gene inactivation and elimination use small molecules such as the cysteine/cystine couple to overcome potential cell damage resulting from oxidative stress.
Collapse
|
44
|
Serrazanetti DI, Ndagijimana M, Miserocchi C, Perillo L, Guerzoni ME. Fermented tofu: Enhancement of keeping quality and sensorial properties. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Montanari C, Sado Kamdem S, Serrazanetti D, Vannini L, Guerzoni M. Oxylipins generation in Lactobacillus helveticus
in relation to unsaturated fatty acid supplementation. J Appl Microbiol 2013; 115:1388-401. [DOI: 10.1111/jam.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Montanari
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - S.L. Sado Kamdem
- Laboratoire de Microbiologie; Department of Biochemistry; University of Yaounde; Yaounde Cameroon
| | - D.I. Serrazanetti
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - L. Vannini
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - M.E. Guerzoni
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
| |
Collapse
|
46
|
De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 2013; 8:e76993. [PMID: 24130822 PMCID: PMC3793965 DOI: 10.1371/journal.pone.0076993] [Citation(s) in RCA: 581] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 12/14/2022] Open
Abstract
This study aimed at investigating the fecal microbiota and metabolome of children with Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and autism (AD) in comparison to healthy children (HC). Bacterial tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) of the 16S rDNA and 16S rRNA analyses were carried out to determine total bacteria (16S rDNA) and metabolically active bacteria (16S rRNA), respectively. The main bacterial phyla (Firmicutes, Bacteroidetes, Fusobacteria and Verrucomicrobia) significantly (P<0.05) changed among the three groups of children. As estimated by rarefaction, Chao and Shannon diversity index, the highest microbial diversity was found in AD children. Based on 16S-rRNA and culture-dependent data, Faecalibacterium and Ruminococcus were present at the highest level in fecal samples of PDD-NOS and HC children. Caloramator, Sarcina and Clostridium genera were the highest in AD children. Compared to HC, the composition of Lachnospiraceae family also differed in PDD-NOS and, especially, AD children. Except for Eubacterium siraeum, the lowest level of Eubacteriaceae was found on fecal samples of AD children. The level of Bacteroidetes genera and some Alistipes and Akkermansia species were almost the highest in PDD-NOS or AD children as well as almost all the identified Sutterellaceae and Enterobacteriaceae were the highest in AD. Compared to HC children, Bifidobacterium species decreased in AD. As shown by Canonical Discriminant Analysis of Principal Coordinates, the levels of free amino acids and volatile organic compounds of fecal samples were markedly affected in PDD-NOS and, especially, AD children. If the gut microbiota differences among AD and PDD-NOS and HC children are one of the concomitant causes or the consequence of autism, they may have implications regarding specific diagnostic test, and/or for treatment and prevention.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- * E-mail:
| | - Maria Piccolo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Lucia Vannini
- Inter-departmental Centre for Industrial Agri-Food Research, University of Cesena, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sonya Siragusa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea De Giacomo
- Child Neurological and Psychiatric Unit, Department of Neurological and Psychiatric Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Fernanda Cristofori
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Francavilla
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
47
|
Hernandez-Sanabria E, Goonewardene LA, Wang Z, Zhou M, Moore SS, Guan LL. Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle. PLoS One 2013; 8:e58461. [PMID: 23520513 PMCID: PMC3592819 DOI: 10.1371/journal.pone.0058461] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 02/04/2013] [Indexed: 01/08/2023] Open
Abstract
This study aimed to evaluate whether the host genetic background impact the ruminal microbial communities of the progeny of sires from three different breeds under different diets. Eighty five bacterial and twenty eight methanogen phylotypes from 49 individuals of diverging sire breed (Angus, ANG; Charolais, CHA; and Hybrid, HYB), fed high energy density (HE) and low energy density (LE) diets were determined and correlated with breed, rumen fermentation and phenotypic variables, using multivariate statistical approaches. When bacterial phylotypes were compared between diets, ANG offspring showed the lowest number of diet-associated phylotypes, whereas CHA and HYB progenies had seventeen and twenty-three diet-associated phylotypes, respectively. For the methanogen phylotypes, there were no sire breed-associated phylotypes; however, seven phylotypes were significantly different among breeds on either diet (P<0.05). Sire breed did not influence the metabolic variables measured when high energy diet was fed. A correlation matrix of all pairwise comparisons among frequencies of bacterial and methanogen phylotypes uncovered their relationships with sire breed. A cluster containing methanogen phylotypes M16 (Methanobrevibacter gottschalkii) and M20 (Methanobrevibacter smithii), and bacterial phylotype B62 (Robinsoniella sp.) in Angus offspring fed low energy diet reflected the metabolic interactions among microbial consortia. The clustering of the phylotype frequencies from the three breeds indicated that phylotypes detected in CHA and HYB progenies are more similar among them, compared to ANG animals. Our results revealed that the frequency of particular microbial phylotypes in the progeny of cattle may be influenced by the sire breed when different diets are fed and ultimately further impact host metabolic functions, such as feed efficiency.
Collapse
Affiliation(s)
- Emma Hernandez-Sanabria
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Laksiri A. Goonewardene
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen S. Moore
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- The University of Queensland Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, Queensland, Australia
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
48
|
Jin J, Zhang B, Guo H, Cui J, Jiang L, Song S, Sun M, Ren F. Mechanism analysis of acid tolerance response of bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One 2012; 7:e50777. [PMID: 23236393 PMCID: PMC3517610 DOI: 10.1371/journal.pone.0050777] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 12/17/2022] Open
Abstract
To analyze the mechanism of the acid tolerance response (ATR) in Bifidobacterium longum subsp. longum BBMN68, we optimized the acid-adaptation condition to stimulate ATR effectively and analyzed the change of gene expression profile after acid-adaptation using high-throughput RNA-Seq. After acid-adaptation at pH 4.5 for 2 hours, the survival rate of BBMN68 at lethal pH 3.5 for 120 min was increased by 70 fold and the expression of 293 genes were upregulated by more than 2 fold, and 245 genes were downregulated by more than 2 fold. Gene expression profiling of ATR in BBMN68 suggested that, when the bacteria faced acid stress, the cells strengthened the integrity of cell wall and changed the permeability of membrane to keep the H+ from entering. Once the H+ entered the cytoplasm, the cells showed four main responses: First, the F0F1-ATPase system was initiated to discharge H+. Second, the ability to produce NH3 by cysteine-cystathionine-cycle was strengthened to neutralize excess H+. Third, the cells started NER-UVR and NER-VSR systems to minimize the damage to DNA and upregulated HtpX, IbpA, and γ-glutamylcysteine production to protect proteins against damage. Fourth, the cells initiated global response signals ((p)ppGpp, polyP, and Sec-SRP) to bring the whole cell into a state of response to the stress. The cells also secreted the quorum sensing signal (AI-2) to communicate between intraspecies cells by the cellular signal system, such as two-component systems, to improve the overall survival rate. Besides, the cells varied the pathways of producing energy by shifting to BCAA metabolism and enhanced the ability to utilize sugar to supply sufficient energy for the operation of the mechanism mentioned above. Based on these reults, it was inferred that, during industrial applications, the acid resistance of bifidobacteria could be improved by adding BCAA, γ-glutamylcysteine, cysteine, and cystathionine into the acid-stress environment.
Collapse
Affiliation(s)
- Junhua Jin
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, China
| | - Jianyun Cui
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lu Jiang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
| | - Shuhui Song
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Min Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
O'Callaghan S, De Souza DP, Isaac A, Wang Q, Hodkinson L, Olshansky M, Erwin T, Appelbe B, Tull DL, Roessner U, Bacic A, McConville MJ, Likić VA. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics 2012; 13:115. [PMID: 22647087 PMCID: PMC3533878 DOI: 10.1186/1471-2105-13-115] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/17/2012] [Indexed: 01/06/2023] Open
Abstract
Background Gas chromatography–mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
Collapse
Affiliation(s)
- Sean O'Callaghan
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids. Food Microbiol 2012; 29:224-8. [DOI: 10.1016/j.fm.2011.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022]
|