1
|
Novak JK, Gardner JG. Current models in bacterial hemicellulase-encoding gene regulation. Appl Microbiol Biotechnol 2024; 108:39. [PMID: 38175245 PMCID: PMC10766802 DOI: 10.1007/s00253-023-12977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The discovery and characterization of bacterial carbohydrate-active enzymes is a fundamental component of biotechnology innovation, particularly for renewable fuels and chemicals; however, these studies have increasingly transitioned to exploring the complex regulation required for recalcitrant polysaccharide utilization. This pivot is largely due to the current need to engineer and optimize enzymes for maximal degradation in industrial or biomedical applications. Given the structural simplicity of a single cellulose polymer, and the relatively few enzyme classes required for complete bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in the literature. However, the diversity of hemicelluloses found in plant biomass and the multitude of carbohydrate-active enzymes required for their deconstruction has resulted in a less comprehensive understanding of bacterial hemicellulase-encoding gene regulation. Here we review the mechanisms of this process and common themes found in the transcriptomic response during plant biomass utilization. By comparing regulatory systems from both Gram-negative and Gram-positive bacteria, as well as drawing parallels to cellulase regulation, our goals are to highlight the shared and distinct features of bacterial hemicellulase-encoding gene regulation and provide a set of guiding questions to improve our understanding of bacterial lignocellulose utilization. KEY POINTS: • Canonical regulatory mechanisms for bacterial hemicellulase-encoding gene expression include hybrid two-component systems (HTCS), extracytoplasmic function (ECF)-σ/anti-σ systems, and carbon catabolite repression (CCR). • Current transcriptomic approaches are increasingly being used to identify hemicellulase-encoding gene regulatory patterns coupled with computational predictions for transcriptional regulators. • Future work should emphasize genetic approaches to improve systems biology tools available for model bacterial systems and emerging microbes with biotechnology potential. Specifically, optimization of Gram-positive systems will require integration of degradative and fermentative capabilities, while optimization of Gram-negative systems will require bolstering the potency of lignocellulolytic capabilities.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nou NO, Covington JK, Lai D, Mayali X, Seymour CO, Johnston J, Jiao JY, Buessecker S, Mosier D, Muok AR, Torosian N, Cook AM, Briegel A, Woyke T, Eloe-Fadrosh E, Shapiro N, Bryan SG, Sleezer S, Dimapilis J, Gonzalez C, Gonzalez L, Noriega M, Hess M, Carlson RP, Liu L, Li MM, Lian ZH, Zhu S, Liu F, Sun X, Gao B, Mewalal R, Harmon-Smith M, Blaby IK, Cheng JF, Weber PK, Grigorean G, Li WJ, Dekas AE, Pett-Ridge J, Dodsworth JA, Palmer M, Hedlund BP. Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota. Nat Commun 2024; 15:9534. [PMID: 39496591 PMCID: PMC11535203 DOI: 10.1038/s41467-024-53784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Few aerobic hyperthermophilic microorganisms degrade polysaccharides. Here, we describe the genome-enabled enrichment and optical tweezer-based isolation of an aerobic polysaccharide-degrading hyperthermophile, Fervidibacter sacchari, previously ascribed to candidate phylum Fervidibacteria. F. sacchari uses polysaccharides and monosaccharides for growth at 65-87.5 °C and expresses 191 carbohydrate-active enzymes (CAZymes) according to RNA-Seq and proteomics, including 31 with unusual glycoside hydrolase domains (GH109, GH177, GH179). Fluorescence in-situ hybridization and nanoscale secondary ion mass spectrometry confirmed rapid assimilation of 13C-starch in spring sediments. Purified GHs were optimally active at 80-100 °C on ten different polysaccharides. Finally, we propose reassigning Fervidibacteria as a class within phylum Armatimonadota, along with 18 other species, and show that a high number and diversity of CAZymes is a hallmark of the phylum, in both aerobic and anaerobic lineages. Our study establishes Fervidibacteria as hyperthermophilic polysaccharide degraders in terrestrial geothermal springs and suggests a broad role for Armatimonadota in polysaccharide catabolism.
Collapse
Affiliation(s)
- Nancy O Nou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | | | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Juliet Johnston
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Alise R Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Nicole Torosian
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Allison M Cook
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Scott G Bryan
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Savannah Sleezer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marlene Noriega
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Matthias Hess
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Ross P Carlson
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
3
|
Liu J, Shi J, Gao J, Shi R, Zhu J, Jensen MS, Li C, Yang J, Zhao S, Sun A, Sun D, Zhang Y, Liu C, Liu W. Functional studies on tandem carbohydrate-binding modules of a multimodular enzyme possessing two catalytic domains. Appl Environ Microbiol 2024; 90:e0088824. [PMID: 38940565 PMCID: PMC11267928 DOI: 10.1128/aem.00888-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Although functional studies on carbohydrate-binding module (CBM) have been carried out extensively, the role of tandem CBMs in the enzyme containing multiple catalytic domains (CDs) is unclear. Here, we identified a multidomain enzyme (Lc25986) with a novel modular structure from lignocellulolytic bacterial consortium. It consists of a mannanase domain, two CBM65 domains (LcCBM65-1/LcCBM65-2), and an esterase domain. To investigate CBM function and domain interactions, full-length Lc25986 and its variants were constructed and used for enzymatic activity, binding, and bioinformatic analyses. The results showed that LcCBM65-1 and LcCBM65-2 both bind mannan and xyloglucan but not cellulose or β-1,3-1,4-glucan, which differs from the ligand specificity of reported CBM65s. Compared to LcCBM65-2, LcCBM65-1 showed a stronger ligand affinity and a preference for acetylation sites. Both CBM65s stimulated the enzymatic activities of their respective neighboring CDs against acetylated mannan, but did not contribute to the activities of the distal CDs. The time course of mannan hydrolysis indicated that the full-length Lc25986 was more effective in the complete degradation of mixed acetyl/non-acetyl substrates than the mixture of single-CD mutants. When acting on complex substrates, LcCBM65-1 not only improved the enzymatic activity of the mannanase domain, but also directed the esterase domain to the acetylated polysaccharides. LcCBM65-2 adopted a low affinity to reduce interference with the catalysis of the mannanase domain. These results demonstrate the importance of CBMs for the synergism between the two CDs of a multidomain enzyme and suggest that they contribute to the adequate degradation of complex substrates such as plant cell walls. IMPORTANCE Lignocellulolytic enzymes, particularly those of bacterial origin, often harbor multiple carbohydrate-binding modules (CBMs). However, the function of CBM multivalency remains poorly understood. This is especially true for enzymes that contain more than one catalytic domain (CD), as the interactions between CDs, CBMs, and CDs and CBMs can be complex. Our research demonstrates that homogeneous CBMs can have distinct functions in a multimodular enzyme. The tandem CBMs coordinate the CDs in catalytic conflict through their differences in binding affinity, ligand preference, and arrangement within the full-length enzyme. Additionally, although the synergism between mannanase and esterase is widely acknowledged, our study highlights the benefits of integrating the two enzymes into a single entity for the degradation of complex substrates. In summary, these findings enhance our understanding of the intra-synergism of a multimodular enzyme and emphasize the significance of multiple CBMs in this context.
Collapse
Affiliation(s)
- Jiawen Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiani Shi
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiahui Gao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Rui Shi
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Marcus Sepo Jensen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chenchen Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jing Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Siyi Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Aofei Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Tunca B, Kutlar FE, Kas A, Yilmazel YD. Enhanced biohydrogen production from high loads of unpretreated cattle manure by cellulolytic bacterium Caldicellulosiruptor bescii at 75 °C. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:401-410. [PMID: 37776811 DOI: 10.1016/j.wasman.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic bacterium capable of fermenting crystalline cellulose identified to date, and it also has a superior ability to degrade plant biomass without any pretreatment. This study is the first to assess the potential of utilizing unpretreated cattle manure (UCM) as a feedstock for hydrogen (H2) production by C. bescii at a concentration range between 2.5-50 g volatile solids (VS)/L. At 50 g VS/L UCM concentrations, H2 production ceased due to inhibition of C. bescii. To alleviate the impacts of inhibition, two strategies were adopted: (i) reduction of H2 build-up in the reactor headspace via gas sparging and (ii) adaptation of C. bescii to UCM via adaptive laboratory evolution (ALE). The former increased H2 yield by 47% compared to the control reactors, where no sparging was applied. The latter increased H2 yield by 142% compared to the control reactors inoculated by the wild type C. bescii. The UCM-adapted C. bescii demonstrated a remarkable H2 yield of 161.3 ± 1.6 mL H2/g VSadded at 15 g VS/L. This yield represents a twofold increase compared to the maximum H2 yield reported in the literature amongst fermentation studies utilizing manure as feed. At 15 g VS/L, around 73% of UCM was solubilized, and the carbon balance indicated that most of the effluent carbon was in the sugar- and acid-form. The remarkable ability of C. bescii to produce H2 from UCM under non-sterile conditions presents a significant potential for sustainable biohydrogen production from renewable feedstocks.
Collapse
Affiliation(s)
- Berivan Tunca
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Feride Ece Kutlar
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Aykut Kas
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
5
|
Bing RG, Willard DJ, Crosby JR, Adams MWW, Kelly RM. Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype. Front Microbiol 2023; 14:1212538. [PMID: 37601363 PMCID: PMC10434631 DOI: 10.3389/fmicb.2023.1212538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The order Thermoanaerobacterales currently consists of fermentative anaerobic bacteria, including the genus Caldicellulosiruptor. Caldicellulosiruptor are represented by thirteen species; all, but one, have closed genome sequences. Interest in these extreme thermophiles has been motivated not only by their high optimal growth temperatures (≥70°C), but also by their ability to hydrolyze polysaccharides including, for some species, both xylan and microcrystalline cellulose. Caldicellulosiruptor species have been isolated from geographically diverse thermal terrestrial environments located in New Zealand, China, Russia, Iceland and North America. Evidence of their presence in other terrestrial locations is apparent from metagenomic signatures, including volcanic ash in permafrost. Here, phylogeny and taxonomy of the genus Caldicellulosiruptor was re-examined in light of new genome sequences. Based on genome analysis of 15 strains, a new order, Caldicellulosiruptorales, is proposed containing the family Caldicellulosiruptoraceae, consisting of two genera, Caldicellulosiruptor and Anaerocellum. Furthermore, the order Thermoanaerobacterales also was re-assessed, using 91 genome-sequenced strains, and should now include the family Thermoanaerobacteraceae containing the genera Thermoanaerobacter, Thermoanaerobacterium, Caldanaerobacter, the family Caldanaerobiaceae containing the genus Caldanaerobius, and the family Calorimonaceae containing the genus Calorimonas. A main outcome of ANI/AAI analysis indicates the need to reclassify several previously designated species in the Thermoanaerobacterales and Caldicellulosiruptorales by condensing them into strains of single species. Comparative genomics of carbohydrate-active enzyme inventories suggested differentiating phenotypic features, even among strains of the same species, reflecting available nutrients and ecological roles in their native biotopes.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Bing RG, Willard DJ, Manesh MJH, Laemthong T, Crosby JR, Adams MWW, Kelly RM. Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10). Microbiol Resour Announc 2023; 12:e0129222. [PMID: 36722965 PMCID: PMC10019236 DOI: 10.1128/mra.01292-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
The genome sequences of three extremely thermophilic, lignocellulolytic Caldicellulosiruptor species were closed, improving previously reported multiple-contig assemblies. All 14 classified Caldicellulosiruptor spp. now have closed genomes. Genome closure will enhance bioinformatic analysis of the species, including identification of carbohydrate-active enzymes (CAZymes) and comparison against other Caldicellulosiruptor species and lignocellulolytic microorganisms.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Extremophiles 2023; 27:6. [PMID: 36802247 PMCID: PMC10514702 DOI: 10.1007/s00792-023-01290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Department of Chemical Engineering, Thammasat University, Pathum Thani, 12120, Thailand
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
8
|
Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov DA, Zhang Y, Adams MWW, Kelly RM. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Appl Environ Microbiol 2022; 88:e0130222. [PMID: 36218355 PMCID: PMC9642015 DOI: 10.1128/aem.01302-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.
Collapse
Affiliation(s)
- James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Laemthong T, Bing RG, Crosby JR, Adams MWW, Kelly RM. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. Appl Environ Microbiol 2022; 88:e0127422. [PMID: 36169328 PMCID: PMC9599439 DOI: 10.1128/aem.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited β-1,3-glucanase activity, Calkro_0402 was active on both β-1,3/1,4-glucan and β-1,4-xylan, Calkro_2036 exhibited activity on both β-1,3/1,4-glucan and β-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Adeniyi A, Bello I, Mukaila T, Hammed A. A Review of Microbial Molecular Profiling during Biomass Valorization. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. mSystems 2021; 6:e0134520. [PMID: 34060910 PMCID: PMC8579813 DOI: 10.1128/msystems.01345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina A. Rodionova
- Department of Bioengineering, University of California—San Diego, La Jolla, California, USA
| | - Vladimir A. Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mirko Basen
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Mikrobiologie, Universität Rostock, Rostock, Germany
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charlotte M. Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- University of Otago, Dunedin, New Zealand
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
13
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
14
|
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Appl Environ Microbiol 2020; 86:AEM.00200-20. [PMID: 32086304 DOI: 10.1128/aem.00200-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.
Collapse
|
15
|
Blumer-Schuette SE. Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology. Microorganisms 2020; 8:E385. [PMID: 32164310 PMCID: PMC7142884 DOI: 10.3390/microorganisms8030385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
Plant polysaccharides continue to serve as a promising feedstock for bioproduct fermentation. However, the recalcitrant nature of plant biomass requires certain key enzymes, including cellobiohydrolases, for efficient solubilization of polysaccharides. Thermostable carbohydrate-active enzymes are sought for their stability and tolerance to other process parameters. Plant biomass degrading microbes found in biotopes like geothermally heated water sources, compost piles, and thermophilic digesters are a common source of thermostable enzymes. While traditional thermophilic enzyme discovery first focused on microbe isolation followed by functional characterization, metagenomic sequences are negating the initial need for species isolation. Here, we summarize the current state of knowledge about the extremely thermophilic genus Caldicellulosiruptor, including genomic and metagenomic analyses in addition to recent breakthroughs in enzymology and genetic manipulation of the genus. Ten years after completing the first Caldicellulosiruptor genome sequence, the tools required for systems biology of this non-model environmental microorganism are in place.
Collapse
|
16
|
Krska D, Larsbrink J. Investigation of a thermostable multi-domain xylanase-glucuronoyl esterase enzyme from Caldicellulosiruptor kristjanssonii incorporating multiple carbohydrate-binding modules. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:68. [PMID: 32308737 PMCID: PMC7151638 DOI: 10.1186/s13068-020-01709-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Efficient degradation of lignocellulosic biomass has become a major bottleneck in industrial processes which attempt to use biomass as a carbon source for the production of biofuels and materials. To make the most effective use of the source material, both the hemicellulosic as well as cellulosic parts of the biomass should be targeted, and as such both hemicellulases and cellulases are important enzymes in biorefinery processes. Using thermostable versions of these enzymes can also prove beneficial in biomass degradation, as they can be expected to act faster than mesophilic enzymes and the process can also be improved by lower viscosities at higher temperatures, as well as prevent the introduction of microbial contamination. RESULTS This study presents the investigation of the thermostable, dual-function xylanase-glucuronoyl esterase enzyme CkXyn10C-GE15A from the hyperthermophilic bacterium Caldicellulosiruptor kristjanssonii. Biochemical characterization of the enzyme was performed, including assays for establishing the melting points for the different protein domains, activity assays for the two catalytic domains, as well as binding assays for the multiple carbohydrate-binding domains present in CkXyn10C-GE15A. Although the enzyme domains are naturally linked together, when added separately to biomass, the expected boosting of the xylanase action was not seen. This lack of intramolecular synergy might suggest, together with previous data, that increased xylose release is not the main beneficial trait given by glucuronoyl esterases. CONCLUSIONS Due to its thermostability, CkXyn10C-GE15A is a promising candidate for industrial processes, with both catalytic domains exhibiting melting temperatures over 70 °C. Of particular interest is the glucuronoyl esterase domain, as it represents the first studied thermostable enzyme displaying this activity.
Collapse
Affiliation(s)
- Daniel Krska
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Chu Y, Hao Z, Wang K, Tu T, Huang H, Wang Y, Bai YG, Wang Y, Luo H, Yao B, Su X. The GH10 and GH48 dual-functional catalytic domains from a multimodular glycoside hydrolase synergize in hydrolyzing both cellulose and xylan. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:279. [PMID: 31827607 PMCID: PMC6892212 DOI: 10.1186/s13068-019-1617-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Regarding plant cell wall polysaccharides degradation, multimodular glycoside hydrolases (GHs) with two catalytic domains separated by one or multiple carbohydrate-binding domains are rare in nature. This special mode of domain organization endows the Caldicellulosiruptor bescii CelA (GH9-CBM3c-CBM3b-CBM3b-GH48) remarkably high efficiency in hydrolyzing cellulose. CbXyn10C/Cel48B from the same bacterium is also such an enzyme which has, however, evolved to target both xylan and cellulose. Intriguingly, the GH10 endoxylanase and GH48 cellobiohydrolase domains are both dual functional, raising the question if they can act synergistically in hydrolyzing cellulose and xylan, the two major components of plant cell wall. RESULTS In this study, we discovered that CbXyn10C and CbCel48B, which stood for the N- and C-terminal catalytic domains, respectively, cooperatively released much more cellobiose and cellotriose from cellulose. In addition, they displayed intramolecular synergy but only at the early stage of xylan hydrolysis by generating higher amounts of xylooligosaccharides including xylotriose, xylotetraose, and xylobiose. When complex lignocellulose corn straw was used as the substrate, the synergy was found only for cellulose but not xylan hydrolysis. CONCLUSION This is the first report to reveal the synergy between a GH10 and a GH48 domain. The synergy discovered in this study is helpful for understanding how C. bescii captures energy from these recalcitrant plant cell wall polysaccharides. The insight also sheds light on designing robust and multi-functional enzymes for plant cell wall polysaccharides degradation.
Collapse
Affiliation(s)
- Yindi Chu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005 China
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Kaikai Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Ying Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| |
Collapse
|
18
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
19
|
Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 2019; 46:1251-1263. [PMID: 31392469 DOI: 10.1007/s10295-019-02222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.
Collapse
|
20
|
Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MW, Kelly RM. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in ‘Caldi World’. Extremophiles 2019; 24:1-15. [DOI: 10.1007/s00792-019-01116-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
|
21
|
Marcano-Velazquez JG, Lo J, Nag A, Maness PC, Chou KJ. Developing Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria. ACS Synth Biol 2019; 8:633-640. [PMID: 30943368 DOI: 10.1021/acssynbio.8b00487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thermophilic bacteria are attractive hosts to produce bio-based chemicals. While various genetic manipulations have been employed in the metabolic engineering of thermophiles, a robust means to regulate gene expression in these bacteria (∼55 °C) is missing. Our bioinformatic search for various riboswitches in thermophilic bacteria revealed that major classes of riboswitches are present, suggesting riboswitches' regulatory roles in these bacteria. By building synthetic constructs incorporating natural and engineered purine riboswitch sequences originated from foreign species, we quantified respective riboswitches activities in repressing and up-regulating gene expression in Geobacillus thermoglucosidasius using a green fluorescence protein. The elicited regulatory response was ligand-concentration-dependent. We further demonstrated that riboswitch-mediated gene expression of adhE (responsible for ethanol production) in Clostridium thermocellum can modulate ethanol production, redirect metabolites, and control cell growth in the adhE knockout mutant. This work has made tunable gene expression feasible across different thermophiles for broad applications including biofuels production and gene-to-trait mapping.
Collapse
Affiliation(s)
| | - Jonathan Lo
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Ambarish Nag
- Computational Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Katherine J. Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| |
Collapse
|
22
|
Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, Blumer-Schuette SE, Adams MWW, Kelly RM. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species. Appl Environ Microbiol 2019; 85:e01983-18. [PMID: 30478233 PMCID: PMC6344629 DOI: 10.1128/aem.01983-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022] Open
Abstract
Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.
Collapse
Affiliation(s)
- Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - William S Hart
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
23
|
Argentini A, Staes A, Grüning B, Mehta S, Easterly C, Griffin TJ, Jagtap P, Impens F, Martens L. Update on the moFF Algorithm for Label-Free Quantitative Proteomics. J Proteome Res 2018; 18:728-731. [DOI: 10.1021/acs.jproteome.8b00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Argentini
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg 79110, Germany
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Caleb Easterly
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Conway JM, Crosby JR, Hren AP, Southerland RT, Lee LL, Lunin VV, Alahuhta P, Himmel ME, Bomble YJ, Adams MWW, Kelly RM. Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic
Caldicellulosiruptor
species. AIChE J 2018. [DOI: 10.1002/aic.16354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan M. Conway
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - James R. Crosby
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Andrew P. Hren
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Robert T. Southerland
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Laura L. Lee
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | | | - Petri Alahuhta
- Biosciences CenterNational Renewable Energy LaboratoryGoldenCO80401
| | | | | | - Michael W. W. Adams
- Dept. of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602
| | - Robert M. Kelly
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| |
Collapse
|
25
|
Conway JM, Crosby JR, McKinley BS, Seals NL, Adams MWW, Kelly RM. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in theCaldicellulosiruptor besciisecretome. Biotechnol Bioeng 2018; 115:2426-2440. [DOI: 10.1002/bit.26773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan M. Conway
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - James R. Crosby
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Bennett S. McKinley
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Nathaniel L. Seals
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthens GA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| |
Collapse
|
26
|
Hitschler L, Kuntz M, Langschied F, Basen M. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Appl Microbiol Biotechnol 2018; 102:8465-8476. [DOI: 10.1007/s00253-018-9210-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
|
27
|
Williams-Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Poole Ii FL, Kelly RM, Adams MWW. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab Eng Commun 2018; 7:e00073. [PMID: 30009131 PMCID: PMC6041484 DOI: 10.1016/j.mec.2018.e00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 11/06/2022] Open
Abstract
Caldicellulosiruptor bescii is an extremely thermophilic cellulolytic bacterium with great potential for consolidated bioprocessing of renewable plant biomass. Since it does not natively produce ethanol, metabolic engineering is required to create strains with this capability. Previous efforts involved the heterologous expression of the gene encoding a bifunctional alcohol dehydrogenase, AdhE, which uses NADH as the electron donor to reduce acetyl-CoA to ethanol. Acetyl-CoA produced from sugar oxidation also generates reduced ferredoxin but there is no known pathway for the transfer of electrons from reduced ferredoxin to NAD in C. bescii. Herein, we engineered a strain of C. bescii using a more stable genetic background than previously reported and heterologously-expressed adhE from Clostridium thermocellum (which grows optimally (Topt) at 60 °C) with and without co-expression of the membrane-bound Rnf complex from Thermoanaerobacter sp. X514 (Topt 60 °C). Rnf is an energy-conserving, reduced ferredoxin NAD oxidoreductase encoded by six genes (rnfCDGEAB). It was produced in a catalytically active form in C. bescii that utilized the largest DNA construct to be expressed in this organism. The new genetic lineage containing AdhE resulted in increased ethanol production compared to previous reports. Ethanol production was further enhanced by the presence of Rnf, which also resulted in decreased production of pyruvate, acetoin and an uncharacterized compound as unwanted side-products. Using crystalline cellulose as the growth substrate for the Rnf-containing strain, 75 mM (3.5 g/L) ethanol was produced at 60 °C, which is 5-fold higher than that reported previously. This underlines the importance of redox balancing and paves the way for achieving even higher ethanol titers in C. bescii. New stable genetic background results in higher ethanol production. Ethanol production is enhanced further by reduced ferredoxin NAD oxidoreductase (Rnf). Rnf decreases pyruvate, acetoin and an unknown compound as unwanted side products. Maximum ethanol production is five-times higher than that achieved previously.
Collapse
Affiliation(s)
| | - Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Israel M Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Farris L Poole Ii
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii. Extremophiles 2018; 22:629-638. [PMID: 29797090 DOI: 10.1007/s00792-018-1023-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Regulated control of both homologous and heterologous gene expression is essential for precise genetic manipulation and metabolic engineering of target microorganisms. However, there are often no options available for inducible promoters when working with non-model microorganisms. These include extremely thermophilic, cellulolytic bacteria that are of interest for renewable lignocellulosic conversion to biofuels and chemicals. In fact, improvements to the genetic systems in these organisms often cease once transformation is achieved. This present study expands the tools available for genetically engineering Caldicellulosiruptor bescii, the most thermophilic cellulose-degrader known growing up to 90 °C on unpretreated plant biomass. A native xylose-inducible (P xi ) promoter was utilized to control the expression of the reporter gene (ldh) encoding lactate dehydrogenase. The P xi -ldh construct resulted in a both increased ldh expression (20-fold higher) and lactate dehydrogenase activity (32-fold higher) in the presence of xylose compared to when glucose was used as a substrate. Finally, lactate production during growth of the recombinant C. bescii strain was proportional to the initial xylose concentration, showing that tunable expression of genes is now possible using this xylose-inducible system. This study represents a major step in the use of C. bescii as a potential platform microorganism for biotechnological applications using renewable biomass.
Collapse
|
29
|
Lee LL, Blumer-Schuette SE, Izquierdo JA, Zurawski JV, Loder AJ, Conway JM, Elkins JG, Podar M, Clum A, Jones PC, Piatek MJ, Weighill DA, Jacobson DA, Adams MWW, Kelly RM. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Appl Environ Microbiol 2018; 84:e02694-17. [PMID: 29475869 PMCID: PMC5930323 DOI: 10.1128/aem.02694-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.
Collapse
Affiliation(s)
- Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Javier A Izquierdo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey V Zurawski
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marek J Piatek
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
30
|
Russell J, Kim SK, Duma J, Nothaft H, Himmel ME, Bomble YJ, Szymanski CM, Westpheling J. Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:259. [PMID: 30258493 PMCID: PMC6151902 DOI: 10.1186/s13068-018-1266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 05/21/2023]
Abstract
Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism's ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.
Collapse
Affiliation(s)
- Jordan Russell
- Microbiology Department, University of Georgia, Athens, GA USA
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Sun-Ki Kim
- Genetics Department, University of Georgia, Athens, GA USA
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546 Republic of Korea
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Justin Duma
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Christine M. Szymanski
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Janet Westpheling
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| |
Collapse
|
31
|
Poudel S, Giannone RJ, Basen M, Nookaew I, Poole FL, Kelly RM, Adams MWW, Hettich RL. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:80. [PMID: 29588665 PMCID: PMC5865380 DOI: 10.1186/s13068-018-1076-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/09/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. RESULTS Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. CONCLUSIONS This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii's utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.
Collapse
Affiliation(s)
- Suresh Poudel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mirko Basen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Present Address: Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Intawat Nookaew
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Farris L. Poole
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Robert M. Kelly
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Michael W. W. Adams
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center at Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|