1
|
Liu C, Wang Z, Chen Y, Yan Y, Li L, Wang YJ, Bai L, Li S, Zhang Y, Wang X, Huang SX, Xiang W. Guvermectin Biosynthesis Revealing the Key Role of a Phosphoribohydrolase and Structural Insight into the Active Glutamate of a Noncanonical Adenine Phosphoribosyltransferase. ACS Chem Biol 2023; 18:102-111. [PMID: 36623177 DOI: 10.1021/acschembio.2c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Guvermectin is a novel plant growth regulator that has been registered as a new agrochemical in China. It is an adenosine analogue with an unusual psicofuranose instead of ribose. Herein, the gene cluster responsible for guvermectin biosynthesis in Streptomyces caniferus NEAU6 is identified using gene interruption and heterologous expression experiments. A key intermediate psicofuranine 6'-phosphate (PMP) is chemically synthesized, and the functions of GvmB, C, D, and E are verified by individual stepwise enzyme reactions in vitro. The results also show that the biosynthesis of guvermectin is coupled with adenosine production by a single cluster. The higher catalytic efficiency of GvmB on PMP than AMP ensures the effective biosynthesis of guvermectin. Moreover, a phosphoribohydrolase GvmA is employed in the pathway that can hydrolyze AMP but not PMP and shows higher catalytic efficiency for the AMP hydrolysis than that of the AMP dephosphorylation by GvmB, leading to shunting of adenosine biosynthesis toward the production of guvermectin. Finally, the crystal structure of GvmE in complex with the product PMP has been solved. Glu160 at the C-terminal is identified as the acid/base for protonation/deprotonation of N7 of the adenine ring, demonstrating that GvmE is a noncanonical adenine phosphoribosyltransferase.
Collapse
Affiliation(s)
- Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiyan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lu Bai
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
3
|
A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge. Mar Drugs 2021; 19:md19020105. [PMID: 33670308 PMCID: PMC7918784 DOI: 10.3390/md19020105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.
Collapse
|
4
|
Ngivprom U, Kluaiphanngam S, Ji W, Siriwibool S, Kamkaew A, Ketudat Cairns JR, Zhang Q, Lai RY. Characterization of NucPNP and NucV involved in the early steps of nucleocidin biosynthesis in Streptomyces calvus. RSC Adv 2021; 11:3510-3515. [PMID: 35424298 PMCID: PMC8694150 DOI: 10.1039/d0ra10878b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleocidin 1 produced by Streptomyces calvus is one of five characterized natural products containing fluorine. It was discovered in 1956, but its biosynthesis is not yet completely resolved. Recently, the biosynthetic gene cluster of 1 was identified. The nucPNP gene, which was initially annotated as orf206 and encodes a putative purine nucleoside phosphorylase, is essential for nucleocidin production. In this study, we performed in vitro assays and showed NucPNP produced adenine 3 from methylthioadenosine (MTA) 2 and adenosine 4. We also showed the downstream enzyme, NucV annotated as adenine phosphoribosyltransferase (APRT), catalyzes AMP formation from adenine 3 and 5-phospho-α-d-ribose-1-diphosphate (PRPP) 5. However, the catalytic efficiency of NucV was much slower than its homolog ScAPRT involved in the biosynthesis of canonical purine nucleoside in the same strain. These results provide new insights in nucleocidin biosynthesis and could guide future research on organofluorine formation.
Collapse
Affiliation(s)
- Utumporn Ngivprom
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Surayut Kluaiphanngam
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wenjuan Ji
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Siriwalee Siriwibool
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand .,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand .,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
5
|
Samunuri R, Toyama M, Pallaka RS, Neeladri S, Jha AK, Baba M, Bal C. Synthesis and anti-HBV activity of carbocyclic nucleoside hybrids with salient features of entecavir and aristeromycin. RSC Med Chem 2020; 11:597-601. [PMID: 33479662 DOI: 10.1039/d0md00059k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Modified carbocyclic nucleosides (4a-g) constituting 7-deazapurine, 4'-methyl, exocyclic double bond and 2',3'-hydroxy were synthesized. NOE and X-ray studies of 4c confirmed the α-configuration of 4'-methyl. The anti-HBV assay demonstrated 4e (IC50 = 3.4 μM) without notable cytotoxicity (CC50 = 87.5 μM) as a promising lead for future exploration.
Collapse
Affiliation(s)
- Ramakrishnamraju Samunuri
- Department of Chemistry , Birla Institute of Technology , Mesra , Ranchi , Jharkhand 835215 , India . .,Chemistry Services , GVK Biosciences Pvt. Ltd , IDA Nacharam , Hyderabad , India
| | - Masaaki Toyama
- Division of Antiviral Chemotherapy , Joint Research Center for Human Retrovirus Infection , Kagoshima University , 8-35-1, Sakuragaoka , Kagoshima , 890-8544 , Japan
| | | | - Seshubabu Neeladri
- Chemistry Services , GVK Biosciences Pvt. Ltd , IDA Nacharam , Hyderabad , India
| | - Ashok Kumar Jha
- Chemistry Services , GVK Biosciences Pvt. Ltd , IDA Nacharam , Hyderabad , India
| | - Masanori Baba
- Division of Antiviral Chemotherapy , Joint Research Center for Human Retrovirus Infection , Kagoshima University , 8-35-1, Sakuragaoka , Kagoshima , 890-8544 , Japan
| | - Chandralata Bal
- Department of Chemistry , Birla Institute of Technology , Mesra , Ranchi , Jharkhand 835215 , India .
| |
Collapse
|
6
|
Daley SK, Cordell GA. Homopurine Alkaloids: A Brief Overview. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20917787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The isolation, structure elucidation, synthesis, biological properties, and biosynthesis of the homopurine alkaloids are reviewed, with an emphasis on the “victim-guardian” relationships between co-occurring alkaloids.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Comparative Investigation into Formycin A and Pyrazofurin A Biosynthesis Reveals Branch Pathways for the Construction of C-Nucleoside Scaffolds. Appl Environ Microbiol 2020; 86:AEM.01971-19. [PMID: 31676476 DOI: 10.1128/aem.01971-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related C-nucleoside antibiotics in which ribose and a pyrazole-derived base are linked by a C-glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria and propose that their biosynthesis is likely initiated by a lysine N 6-monooxygenase. Moreover, we show that forT and prfT (involved in FOR-A and PRF-A biosynthesis, respectively) mutants are correspondingly capable of accumulating the unexpected pyrazole-related intermediates 4-amino-3,5-dicarboxypyrazole and 3,5-dicarboxy-4-oxo-4,5-dihydropyrazole. We also decipher the enzymatic mechanism of ForT/PrfT for C-glycosidic bond formation in FOR-A/PRF-A biosynthesis. To our knowledge, ForT/PrfT represents an example of β-RFA-P (β-ribofuranosyl-aminobenzene 5'-phosphate) synthase-like enzymes governing C-nucleoside scaffold construction in natural product biosynthesis. These data establish a foundation for combinatorial biosynthesis of related purine nucleoside antibiotics and also open the way for target-directed genome mining of PRF-A/FOR-A-related antibiotics.IMPORTANCE FOR-A and PRF-A are C-nucleoside antibiotics known for their unusual chemical structures and remarkable biological activities. Deciphering the enzymatic mechanism for the construction of a C-nucleoside scaffold during FOR-A/PRF-A biosynthesis will not only expand the biochemical repertoire for novel enzymatic reactions but also permit target-oriented genome mining of FOR-A/PRF-A-related C-nucleoside antibiotics. Moreover, the availability of FOR-A/PRF-A biosynthetic gene clusters will pave the way for the rational generation of designer FOR-A/PRF-A derivatives with enhanced/selective bioactivity via synthetic biology strategies.
Collapse
|
8
|
Kudo F, Tsunoda T, Yamaguchi K, Miyanaga A, Eguchi T. Stereochemistry in the Reaction of the myo-Inositol Phosphate Synthase Ortholog Ari2 during Aristeromycin Biosynthesis. Biochemistry 2019; 58:5112-5116. [PMID: 31825604 DOI: 10.1021/acs.biochem.9b00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) ortholog Ari2, which is encoded in the aristeromycin biosynthetic gene cluster, catalyzes the formation of five-membered cyclitol phosphate using d-fructose 6-phosphate (F6P) as a substrate. To understand the stereochemistry during the Ari2 reaction in vivo, we carried out feeding experiments with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]glucose in the aristeromycin-producing strain Streptomyces citricolor. We observed retention of the 2H atom of (6S)-d-[6-2H1]glucose and no incorporation of the 2H atom from (6R)-d-[6-2H1]glucose in aristeromycin. This indicates that Ari2 abstracts the pro-R proton at C6 of F6P after oxidation of C5-OH by nicotinamide adenine dinucleotide (NAD+) to generate the enolate intermediate, which then attacks the C2 ketone to form the C-C bond via aldol-type condensation. The reaction of Ari2 with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]F6P in vitro exhibited identical stereochemistry compared with that observed during the feeding experiments. Furthermore, analysis of the crystal structure of Ari2, including NAD+ as a ligand, revealed the active site of Ari2 to be similar to that of MIPS of Mycobacterium tuberculosis, supporting the similarity of the reaction mechanisms of Ari2 and MIPS.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Takeshi Tsunoda
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Kaito Yamaguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Tadashi Eguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| |
Collapse
|