1
|
Xiang N, Meyer A, Pogoreutz C, Rädecker N, Voolstra CR, Wild C, Gärdes A. Excess labile carbon promotes diazotroph abundance in heat-stressed octocorals. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221268. [PMID: 36938541 PMCID: PMC10014249 DOI: 10.1098/rsos.221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen limitation is the foundation of stable coral-algal symbioses. Diazotrophs, prokaryotes capable of fixing N2 into ammonia, support the productivity of corals in oligotrophic waters, but could contribute to the destabilization of holobiont functioning when overstimulated. Recent studies on reef-building corals have shown that labile dissolved organic carbon (DOC) enrichment or heat stress increases diazotroph abundance and activity, thereby increasing nitrogen availability and destabilizing the coral-algal symbiosis. However, the (a)biotic drivers of diazotrophs in octocorals are still poorly understood. We investigated diazotroph abundance (via relative quantification of nifH gene copy numbers) in two symbiotic octocorals, the more mixotrophic soft coral Xenia umbellata and the more autotrophic gorgonian Pinnigorgia flava, under (i) labile DOC enrichment for 21 days, followed by (ii) combined labile DOC enrichment and heat stress for 24 days. Without heat stress, relative diazotroph abundances in X. umbellata and P. flava were unaffected by DOC enrichment. During heat stress, DOC enrichment (20 and 40 mg glucose l-1) increased the relative abundances of diazotrophs by sixfold in X. umbellata and fourfold in P. flava, compared with their counterparts without excess DOC. Our data suggest that labile DOC enrichment and concomitant heat stress could disrupt the nitrogen limitation in octocorals by stimulating diazotroph proliferation. Ultimately, the disruption of nitrogen cycling may further compromise octocoral fitness by destabilizing symbiotic nutrient cycling. Therefore, improving local wastewater facilities to reduce labile DOC input into vulnerable coastal ecosystems may help octocorals cope with ocean warming.
Collapse
Affiliation(s)
- Nan Xiang
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen Bremen 28359, Germany
- Section of Polar Biological Oceanography, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Achim Meyer
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen Bremen 28359, Germany
| | - Astrid Gärdes
- Section of Polar Biological Oceanography, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
- Hochschule Bremerhaven, Fachbereich 1, An der Karlstadt 8, Bremerhaven 27568, Germany
| |
Collapse
|
2
|
Zelli E, Simancas-Giraldo SM, Xiang N, Dessì C, Katzer ND, Tilstra A, Wild C. Individual and combined effect of organic eutrophication (DOC) and ocean warming on the ecophysiology of the Octocoral Pinnigorgia flava. PeerJ 2023; 11:e14812. [PMID: 36814959 PMCID: PMC9940650 DOI: 10.7717/peerj.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/06/2023] [Indexed: 02/19/2023] Open
Abstract
Dissolved organic carbon (DOC) enrichment and ocean warming both negatively affect hard corals, but studies on their combined effects on other reef organisms are scarce. Octocorals are likely to become key players in future reef communities, but they are still highly under-investigated with regard to their responses to global and local environmental changes. Thus, we evaluated the individual and combined effects of DOC enrichment (10, 20 and 40 mg L-1 DOC, added as glucose) and warming (stepwise from 26 to 32 °C) on the widespread Indo-Pacific gorgonian Pinnigorgia flava in a 45-day laboratory experiment. Oxygen fluxes (net photosynthesis and respiration), as well as Symbiodiniaceae cell density and coral growth were assessed. Our results highlight a differential ecophysiological response to DOC enrichment and warming as well as their combination. Individual DOC addition did not significantly affect oxygen fluxes nor Symbiodiniaceae cell density and growth, while warming significantly decreased photosynthesis rates and Symbiodiniaceae cell density. When DOC enrichment and warming were combined, no effect on P. flava oxygen fluxes was observed while growth responded to certain DOC conditions depending on the temperature. Our findings indicate that P. flava is insensitive to the individual effect of DOC enrichment, but not to warming and the two stressors combined. This suggests that, if temperature remains below certain thresholds, this gorgonian species may gain a competitive advantage over coral species that are reportedly more affected by DOC eutrophication. However, under the expected increasing temperature scenarios, it is also likely that this octocoral species will be negatively affected, with potential consequences on community structure. This study contributes to our understanding of the conditions that drive phase shift dynamics in coastal coral reef ecosystemds.
Collapse
Affiliation(s)
- Edoardo Zelli
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,School of Science, University of Waikato, Tauranga, New Zealand
| | | | - Nan Xiang
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Claudia Dessì
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cagliari, Italy
| | - Nadim Daniel Katzer
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Xiang N, Rädecker N, Pogoreutz C, Cárdenas A, Meibom A, Wild C, Gärdes A, Voolstra CR. Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model. ISME COMMUNICATIONS 2022; 2:105. [PMID: 37938763 PMCID: PMC9723753 DOI: 10.1038/s43705-022-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2023]
Abstract
The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont, however the effect of host and algal identity on their community is still unknown. Using the coral model Aiptasia, we quantified and characterized the denitrifier community in a full-factorial design combining two hosts (CC7 and H2) and two strains of algal symbionts of the family Symbiodiniaceae (SSA01 and SSB01). Strikingly, relative abundance of denitrifiers increased by up to 22-fold in photosymbiotic Aiptasia compared to their aposymbiotic (i.e., algal-depleted) counterparts. In line with this, while the denitrifier community in aposymbiotic Aiptasia was largely dominated by diet-associated Halomonas, we observed an increasing relative abundance of an unclassified bacterium in photosymbiotic CC7, and Ketobacter in photosymbiotic H2, respectively. Pronounced changes in denitrifier communities of Aiptasia with Symbiodinium linucheae strain SSA01 aligned with the higher photosynthetic carbon availability of these holobionts compared to Aiptasia with Breviolum minutum strain SSB01. Our results reveal that the presence of algal symbionts increases abundance and alters community structure of denitrifiers in Aiptasia. Thereby, patterns in denitrifier community likely reflect the nutritional status of aposymbiotic vs. symbiotic holobionts. Such a passive regulation of denitrifiers may contribute to maintaining the nitrogen limitation required for the functioning of the cnidarian-algal symbiosis.
Collapse
Affiliation(s)
- Nan Xiang
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany.
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany.
| | - Nils Rädecker
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis (CASA), Institute of Earth Science, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Astrid Gärdes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
- Hochschule Bremerhaven, Fachbereich 1, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | | |
Collapse
|
4
|
Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. THE ISME JOURNAL 2022; 16:1883-1895. [PMID: 35444262 PMCID: PMC9296628 DOI: 10.1038/s41396-022-01226-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.
Collapse
|