1
|
Xue C, Wang Y, He Z, Lu Z, Wu F, Wang Y, Zhen Y, Meng J, Shahzad K, Yang K, Wang M. Melatonin disturbed rumen microflora structure and metabolic pathways in vitro. Microbiol Spectr 2023; 11:e0032723. [PMID: 37929993 PMCID: PMC10714781 DOI: 10.1128/spectrum.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Collapse
Affiliation(s)
- Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Yifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Lu
- Ningxia Dairy Science and Innovation Center of Guangming Animal Husbandry Co., Ltd., Zhongwei, China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
2
|
Subirats J, Sharpe H, Topp E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114643. [PMID: 35151135 DOI: 10.1016/j.jenvman.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Pathogenic spore-forming Firmicutes are commonly present in animal and human wastes that are used as fertilizers in crop production. Pre-treatments of organic waste prior to land application offer the potential to abate enteric microorganisms, and therefore reduce the risk of contamination of crops or adjacent water resources with pathogens carried in these materials. The inactivation and reduction of gram-positive spore formers such as Clostridium spp., Clostridioides spp. and Bacillus spp. from animal and human waste can be challenging given the recalcitrance of the spores these bacteria produce. Given the significance of these organisms to human and animal health, information concerning spore-forming bacteria inactivation during anaerobic digestion (AD) and aerobic composting (AC) is required as the basis for recommending safe organic waste management practices. In this review, an assessment of the inactivation of spore-forming Firmicutes during AD and AC was conducted to provide guidance for practical management of organic matrices of animal or human origin. Temperature and pH may be the main factors contributing to the inactivation of spore-forming Firmicutes during batch lab-scale AD (log reduction <0.5-5 log). In continuous digesters, wet AD systems do not effectively inactivate spore-forming Firmicutes even under thermopholic conditions (log reduction -1.09 - 0.98), but dry AD systems could be a feasible management practice to inactivate spore-forming Firmicutes from organic materials with high solid content (log reduction 1.77-3.1). In contrast, composting is an effective treatment to abate spore-forming Firmicutes (log reduction 1.7-6.5) when thermophilic conditions last at least six consecutive days. Temperature, moisture content and composting scale are the key operating conditions influencing the inactivation of spore-forming Firmicutes during composting. Where possible, undertaking AD with subsequent composting to ensure the biosafety of digestate before its downstream processing and recycling is recommended to abate recalcitrant bacteria in digestate.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
3
|
Giambra IJ, Jahan Y, Yin T, Engel P, Weimann C, Brügemann K, König S. Identification of Thermophilic Aerobic Sporeformers in Bedding Material of Compost-Bedded Dairy Cows Using Microbial and Molecular Methods. Animals (Basel) 2021; 11:ani11102890. [PMID: 34679911 PMCID: PMC8532821 DOI: 10.3390/ani11102890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Compost-bedded pack barns (CBP) reflect a novel dairy cattle housing system with favourable effects on animal health and animal behavior but can promote the growth of thermophilic aerobic sporeformers (TAS) in the composting lying surface. In our study, we determined a medium–high mean TAS concentration across all bedding samples of four different CBP groups. Six different TAS species were identified based on their 16S rRNA-gene sequence, with Bacillus licheniformis being the predominant species. Season, the moisture content of the bedding material and the relative humidity above the bedding material had significant influences on the amount of TAS in the bedding material of the CBP. In addition, the moisture content and the relative humidity above the bedding material significantly influenced the concentration of TAS species each. Other characteristics such as the bedding temperature, the bedded area/cow and the usage time of the bedding material had slight effects on the TAS species occurrence. Due to the negative effect of TAS on milk product quality, considering all identified farm characteristics to optimise TAS contents will contribute to sustainable CBP farming. Abstract Compost-bedded pack barns (CBP) are of increasing interest in dairy farming due to their positive effect on animal welfare. The temperature and the moisture content of the bedding material characterising the composting process can promote the growth of thermophilic aerobic sporeformers (TAS). Therefore, the aim of this study was to determine CBP bedding material characteristics, such as moisture content and temperature, and to determine TAS species. The dilution, the heat inactivation of all non-TAS species and the incubation of 13 bedding samples from four CBP groups resulted in a mean TAS amount over all samples of 4.11 log10 cfu/g bedding material. Based on the subsequent sequencing of parts of the 16S rRNA-gene of 99 TAS colonies, the TAS species Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermodenitrificans, Laceyella sacchari, Thermoactinomyces vulgaris and Ureibacillus thermosphaericus were identified. The moisture content of the bedding material, the relative humidity above the bedding material and the sampling season significantly affected the amount of TAS. The moisture content or relative humidity above the bedding material significantly influenced the concentration of Ureibacillus thermophaericus or Laceyella sacchari. Consequently, an optimal CBP management including a dry lying surface and an optimal composting process will contribute to a moderate microbial, especially TAS amount, and TAS species distribution.
Collapse
|
4
|
Immobilization of Phosphatidylserine by Ethanol and Lysozyme on the Cell Surface for Evaluation of Apoptosis-Like Decay in Activated-Sludge Bacteria. Appl Environ Microbiol 2020; 86:AEM.00345-20. [PMID: 32414801 DOI: 10.1128/aem.00345-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate determination of microbial viability can be crucial in microbe-dominated biosystems. However, the identification of metabolic decay in bacterial cells can be elaborate and difficult. We sought to identify apoptosis-like bacterial processes by using annexin V-fluorescein isothiocyanate (FITC) (AVF), a probe typically used to stain phosphatidylserine (PS) on exposed cell membranes. The bacterial cell wall provides a barrier that is responsible for low efficiency of direct PS staining of decayed bacterial cells. This can be overcome by pretreatment of the bacteria with 70% ethanol, which fixates the bacteria and preserves the PS status, combined with lysozyme treatment to hydrolyze the cell wall. That treatment improved the efficiency of AVF staining considerably, as shown for pure strains of an Ochrobactrum sp. and a Micrococcus sp. Using this method, decayed bacterial cells (induced by starvation) were more strongly stained, indicating externalization of PS to a greater extent than seen for cells harvested at logarithmic growth. A multispecies microbial sludge was artificially decayed by heat treatment or alternating anoxic-oxic treatment, which also induced increased AVF staining, again presumably via decay-related PS externalization. The method developed proved to be efficient for identification of bacterial decay and has potential for the evaluation of multispecies bacterial samples from sources like soil matrix, bioaerosol, and activated sludge.IMPORTANCE Since the externalization of phosphatidylserine (PS) is considered a crucial characteristic of apoptosis, we sought to identify apoptosis-like decay in bacterial cells by PS staining using AVF. We show that this is possible, provided the bacteria are pretreated with ethanol plus lysozyme to remove a physical staining barrier and preserve the original, decay-related externalization of PS. Our work suggests that PS externalization occurs in starved bacteria and this can be quantified with AVF staining, providing a measure of bacterial decay. Since PS is the common component of the lipid bilayer in bacterial cell membranes, this approach also has potential for evaluation of cell decay of other bacterial species.
Collapse
|
5
|
Xu S, Harvey A, Barbieri R, Reuter T, Stanford K, Amoako KK, Selinger LB, McAllister TA. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure. Front Microbiol 2016; 7:806. [PMID: 27303388 PMCID: PMC4882334 DOI: 10.3389/fmicb.2016.00806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures.
Collapse
Affiliation(s)
- Shanwei Xu
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| | - Amanda Harvey
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada; Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| | - Ruth Barbieri
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge AB, Canada
| | - Kingsley K Amoako
- Lethbridge Laboratory, Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge AB, Canada
| | - Leonard B Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Develeopment Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
| |
Collapse
|
6
|
Stanford K, Harvey A, Barbieri R, Xu S, Reuter T, Amoako KK, Selinger LB, McAllister TA. Heat and desiccation are the predominant factors affecting inactivation of Bacillus licheniformis and Bacillus thuringiensis spores during simulated composting. J Appl Microbiol 2015; 120:90-8. [PMID: 26513540 DOI: 10.1111/jam.12991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
AIMS The suitability of composting for disposal of livestock mortalities due to Bacillus anthracis was assessed by measuring viability of surrogate spores from two strains each of Bacillus licheniformis and Bacillus thuringiensis after a heating cycle modelled on a cattle composting study. METHODS AND RESULTS Sporulation was attempted from 10 to 37°C, but poor yields at lower temperatures resulted in 25, 30 and 37°C being selected to generate sufficient spores (8 log10 CFU ml(-1) ) for experiments. Spores were inoculated into 3 g autoclaved dried-ground compost rehydrated with 6 ml water or silica beads in a factorial design for each strain, sporulation temperature, matrix and sampling day (0, 25, 50, 100, 150). Maximum incubation temperature was 62°C, but spores were maintained at ≥55°C for 78 of 150 days. Although significant differences existed among Bacillus strains and sporulation temperatures, numbers of viable spores after 150 days averaged 1·3 log10 CFU g(-1) , a 5·2 log10 reduction from day 0. CONCLUSIONS Spore inactivation was likely due to heat and desiccation as matrices were autoclaved prior to incubation, negating impacts of microflora. SIGNIFICANCE AND IMPACT OF STUDY Results support composting for disposal of anthrax mortalities, provided long-term thermophillic heating is achieved. Due to limited sporulation at 10°C, livestock mortalities from anthrax at this or lower ambient temperatures would likely be of lower risk for disease transmission.
Collapse
Affiliation(s)
- K Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - A Harvey
- University of Lethbridge, Lethbridge, AB, Canada
| | - R Barbieri
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - S Xu
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - T Reuter
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - K K Amoako
- Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - L B Selinger
- University of Lethbridge, Lethbridge, AB, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Reuter T, Gilroyed B, Xu W, McAllister T, Stanford K. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi. J Appl Microbiol 2015; 119:425-34. [DOI: 10.1111/jam.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- T. Reuter
- Government of Alberta; Lethbridge AB Canada
| | | | - W. Xu
- Dalian University of Technology; Panjin China
| | | | | |
Collapse
|
8
|
Stanford K, Reuter T, Gilroyed B, McAllister T. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus
spores during livestock mortality composting. J Appl Microbiol 2015; 118:989-97. [DOI: 10.1111/jam.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
- K. Stanford
- Alberta Agriculture and Rural Development; Lethbridge AB Canada
| | - T. Reuter
- Alberta Agriculture and Rural Development; Lethbridge AB Canada
| | | | | |
Collapse
|
9
|
Escherichia coli persistence kinetics in dairy manure at moderate, mesophilic, and thermophilic temperatures under aerobic and anaerobic environments. Bioprocess Biosyst Eng 2014; 38:457-67. [DOI: 10.1007/s00449-014-1285-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
|
10
|
Tkachuk V, Krause D, Knox N, Hamm A, Zvomuya F, Ominski K, McAllister T. Targeted 16S rRNA high-throughput sequencing to characterize microbial communities during composting of livestock mortalities. J Appl Microbiol 2014; 116:1181-94. [DOI: 10.1111/jam.12449] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/27/2013] [Accepted: 01/09/2014] [Indexed: 01/10/2023]
Affiliation(s)
- V.L. Tkachuk
- Department of Animal Science; University of Manitoba; Winnipeg MB Canada
| | - D.O. Krause
- Department of Animal Science; University of Manitoba; Winnipeg MB Canada
- Department of Medical Microbiology and Infectious Diseases; University of Manitoba; Winnipeg MB Canada
| | - N.C. Knox
- National Microbiology Laboratory; Public Health Agency of Canada; Winnipeg MB Canada
| | - A.C. Hamm
- Department of Animal Science; University of Manitoba; Winnipeg MB Canada
| | - F. Zvomuya
- Department of Soil Science; University of Manitoba; Winnipeg MB Canada
| | - K.H. Ominski
- Department of Animal Science; University of Manitoba; Winnipeg MB Canada
| | - T.A. McAllister
- Lethbridge Research Centre; Agriculture & Agri-Food Canada; Lethbridge AB Canada
| |
Collapse
|
11
|
Franke-Whittle IH, Insam H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol 2012; 39:139-51. [PMID: 22694189 PMCID: PMC3622235 DOI: 10.3109/1040841x.2012.694410] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of.
Collapse
|