1
|
Sanchez-Gallardo R, O’Connor PM, O’Neill IJ, McDonnell B, Lee C, Moore RL, McAuliffe FM, Cotter PD, van Sinderen D. Pseudocin 196, a novel lantibiotic produced by Bifidobacterium pseudocatenulatum elicits antimicrobial activity against clinically relevant pathogens. Gut Microbes 2024; 16:2387139. [PMID: 39106231 PMCID: PMC11305057 DOI: 10.1080/19490976.2024.2387139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Bacteriocins are broad or narrow-spectrum antimicrobial compounds that have received significant scientific attention due to their potential to treat infections caused by antibiotic-resistant pathogenic bacteria. The genome of Bifidobacterium pseudocatenulatum MM0196, an antimicrobial-producing, fecal isolate from a healthy pregnant woman, was shown to contain a gene cluster predicted to encode Pseudocin 196, a novel lantibiotic, in addition to proteins involved in its processing, transport and immunity. Following antimicrobial assessment against various indicator strains, protease-sensitive Pseudocin 196 was purified to homogeneity from cell-free supernatant. MALDI TOF mass spectrometry confirmed that the purified antimicrobial compound corresponds to a molecular mass of 2679 Da, which is consistent with that deduced from its genetic origin. Pseudocin 196 is classified as a lantibiotic based on its similarity to lacticin 481, a lanthionine ring-containing lantibiotic produced by Lactococcus lactis. Pseudocin 196, the first reported bacteriocin produced by a B. pseudocatenulatum species of human origin, was shown to inhibit clinically relevant pathogens, such as Clostridium spp. and Streptococcus spp. thereby highlighting the potential application of this strain as a probiotic to treat and prevent bacterial infections.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paula M. O’Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Brian McDonnell
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Shin H, Takahashi T, Lee S, Choi EH, Maeda T, Fukushima Y, Kim S. Comparing Genomic Characteristics of Streptococcus pyogenes Associated with Invasiveness over a 20-year Period in Korea. Ann Lab Med 2022; 42:438-446. [PMID: 35177564 PMCID: PMC8859563 DOI: 10.3343/alm.2022.42.4.438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Few studies have investigated the invasiveness of Streptococcus pyogenes based on whole-genome sequencing (WGS). Using WGS, we determined the genomic features associated with invasiveness of S. pyogenes strains in Korea. Methods Forty-five S. pyogenes strains from 1997, 2006, and 2017, including common emm types, were selected from the repository at Gyeongsang National University Hospital in Korea. In addition, 48 S. pyogenes strains were randomly selected depending on their invasiveness between 1997 and 2017 to evaluate the genetic evolution and the associations between invasiveness and genetic profiles. Using WGS datasets, we conducted virulence-associated DNA sequence determination, emm genotyping, multi-locus sequence typing (MLST), and superantigen gene profiling. Results In total, 87 strains were included in this study. There were no significant differences in the genomic features throughout the study periods. Four genes, csn1, ispE, nisK, and citC, were detected only in invasive strains. There was a significant association between invasiveness and emm cluster type A-C3, including, emm1.0, emm1.18, emm1.3, and emm1.76 (P<0.05). The predominant emm1 lineage belonged to ST28. There were no associations between invasiveness and superantigen gene profiles. Conclusions This is the first study using WGS datasets of S. pyogenes strains collected between 1997 and 2017 in Korea. Streptococcal invasiveness is associated with the presence of csn1, ispE, nisK, and citC. The emm1 lineage and ST28 clone are explicitly associated with invasiveness, whereas genomic features remained stable over the 20-year period.
Collapse
Affiliation(s)
- Hyoshim Shin
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Seungjun Lee
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Takahiro Maeda
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Yasuto Fukushima
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Institute of Health Sciences, Jinju, Korea
| |
Collapse
|
3
|
Watanabe A, Kawada-Matsuo M, Le MNT, Hisatsune J, Oogai Y, Nakano Y, Nakata M, Miyawaki S, Sugai M, Komatsuzawa H. Comprehensive analysis of bacteriocins in Streptococcus mutans. Sci Rep 2021; 11:12963. [PMID: 34155274 PMCID: PMC8217173 DOI: 10.1038/s41598-021-92370-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Streptococcus mutans produces bacteriocins that show antibacterial activity against several bacteria. However, comprehensive analysis of these bacteriocins has not been well done. In this study, we isolated 125 S. mutans strains from volunteers and determined their whole genome sequence. Based on the genome analysis, the distribution of each bacteriocin gene (mutacins I-IV, K8 and Smb) was investigated. We found 17, 5, and 2 strains showing 100% matches with mutacin I, mutacin II and mutacin III, respectively. Five mutacin III-positive strains had 2 mismatches compared to mature mutacin III. In 67 mutacin IV-positive strains, 38 strains showed 100% match with mutacin IV, while 29 strains showed some variations. In 23 mutacin K8- and 32 mutacin Smb-positive strains, all except one mutacin K8-positive strain showed 100% match with the mature peptides. Among 125 strains, 84 (65.1%), 26 (20.2%), and 5 (3.9%) strains were positive for one, two and three bacteriocin genes, respectively. Then, the antibacterial activity against oral streptococci and other oral bacterial species was investigated by using bacteriocin gene single-positive strains. Each bacteriocin gene-positive strain showed a different pattern of antibacterial activity. These results speculate that individual S. mutans strains may affect the bacterial composition of dental plaques.
Collapse
Affiliation(s)
- Atsuko Watanabe
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan.,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan.,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.,Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshio Nakano
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Motoyuki Sugai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.,Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan. .,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
4
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
5
|
He H, Peng S, Yuan S, Tang J, Liu Z, Rang J, Xia Z, Hu J, Chen J, Ding X, Hu S, Sun Y, Xia L. Effects of lytS-L on the primary metabolism and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Gene 2020; 766:145130. [PMID: 32911030 DOI: 10.1016/j.gene.2020.145130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
The LytTR family two-component system widely exists in bacterial cells and plays an important role in metabolic regulation. The lytS-L gene that encodes for a LytTR family sensor kinase was knocked out to study its influence on the growth, phenotype, and the biosynthesis of the insecticidal polyketide butenyl-spinosyn in Saccharopolyspora pogona NRRL 30141 (S. pogona). High performance liquid chromatography (HPLC) results showed that the butenyl-spinosyn yield of the lytS-L knockout mutant decreased by 58.9% compared with that of the parental strain. This is manifested by a weak toxicity of the mutant against the insect Helicoverpa assulta (H. armigera). Comparative proteomic analysis revealed the expression characteristics of the proteins in S. pogona and S. pogona-ΔlytS-L: a total of 14 proteins involved in energy metabolism were down-regulated, 9 proteins related to carbon metabolism such as glycolysis, and tricarboxylic acid cycle (TCA) were up-regulated, while 13 proteins involved in the biosynthesis of butenyl-spinosyn were down-regulated (fold change >1.2 or< 0.83). The qRT-PCR (Quantitative Real-time PCR) analysis illustrated that the changes in the expression levels of transcription and translation of the identified genes were consistent. This study explores the function of the two-component system of the LytTR family in S. pogona and shows that the lytS-L gene has an important influence on regulating primary metabolism and butenyl-spinosyn biosynthesis of S. pogona.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengnan Peng
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
6
|
Banerji R, Kanojiya P, Saroj SD. Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev Microbiol 2020; 46:136-146. [DOI: 10.1080/1040841x.2020.1735991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
7
|
Buckley SJ, Timms P, Davies MR, McMillan DJ. In silico characterisation of the two-component system regulators of Streptococcus pyogenes. PLoS One 2018; 13:e0199163. [PMID: 29927994 PMCID: PMC6013163 DOI: 10.1371/journal.pone.0199163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria respond to environmental changes through the co-ordinated regulation of gene expression, often mediated by two-component regulatory systems (TCS). Group A Streptococcus (GAS), a bacterium which infects multiple human body sites and causes multiple diseases, possesses up to 14 TCS. In this study we examined genetic variation in the coding sequences and non-coding DNA upstream of these TCS as a method for evaluating relationships between different GAS emm-types, and potential associations with GAS disease. Twelve of the 14 TCS were present in 90% of the genomes examined. The length of the intergenic regions (IGRs) upstream of TCS coding regions varied from 39 to 345 nucleotides, with an average nucleotide diversity of 0.0064. Overall, IGR allelic variation was generally conserved with an emm-type. Subsequent phylogenetic analysis of concatenated sequences based on all TCS IGR sequences grouped genomes of the same emm-type together. However grouping with emm-pattern and emm-cluster-types was much weaker, suggesting epidemiological and functional properties associated with the latter are not due to evolutionary relatedness of emm-types. All emm5, emm6 and most of the emm18 genomes, all historically considered rheumatogenic emm-types clustered together, suggesting a shared evolutionary history. However emm1, emm3 and several emm18 genomes did not cluster within this group. These latter emm18 isolates were epidemiologically distinct from other emm18 genomes in study, providing evidence for local variation. emm-types associated with invasive disease or nephritogenicity also did not cluster together. Considering the TCS coding sequences (cds), correlation with emm-type was weaker than for the IGRs, and no strong correlation with disease was observed. Deletion of the malate transporter, maeP, was identified that serves as a putative marker for the emm89.0 subtype, which has been implicated in invasive outbreaks. A recombination-related, subclade-forming DNA motif was identified in the putative receiver domain of the Spy1556 response regulator that correlated with throat-associated emm-pattern-type A-C strains.
Collapse
Affiliation(s)
- Sean J. Buckley
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. McMillan
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|