1
|
Acuña JJ, Hu J, Inostroza NG, Valenzuela T, Perez P, Epstein S, Sessitsch A, Zhang Q, Jorquera MA. Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables. Sci Rep 2023; 13:19829. [PMID: 37963999 PMCID: PMC10645892 DOI: 10.1038/s41598-023-47099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Chile is a prominent seed exporter globally, but the seed microbiome of vegetables (46% of seeds) and its role in the early stages of plant growth have remained largely unexplored. Here, we employed DNA metabarcoding analysis to investigate the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of the commercial vegetables Apiaceae (parsley and carrot), Asteraceae (lettuce), Brassicaceae (cabbage and broccoli), and Solanaceae (tomato). Bacterial quantification showed 104 to 108 copies of the 16S rRNA gene per gram of ungerminated and germinated seeds. Alpha diversity analysis (e.g., Chao1, Shannon, and Simpson indices) did not indicate significant differences (Kruskal-Wallis test) between ungerminated and germinated seeds, except for Solanaceae. However, beta diversity (PCoA) analysis showed distinctions (Adonis test) between ungerminated and germinated seeds, except Apiaceae. Pseudomonadota and Bacillota were identified as the dominant and specialist taxa in both ungerminated and germinated seed samples. Chemoheterotrophy and fermentation were predicted as the main microbial functional groups in the endophytic bacterial community. Notably, a considerable number of the 143 isolated endophytic strains displayed plant growth-promoting traits (10 to 64%) and biocontrol activity (74% to 82%) against plant pathogens (Xanthomonas and Pseudomonas). This study revealed the high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables. Furthermore, potential beneficial endophytic bacteria contained in their seed microbiomes that may contribute to the microbiome of the early stages, development, growth and progeny of vegetables were found.
Collapse
Affiliation(s)
- Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, 7800003, Santiago, La Reina, Chile
| | - Jingming Hu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nitza G Inostroza
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Tamara Valenzuela
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Pablo Perez
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Slava Epstein
- College of Science, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Angela Sessitsch
- Health & Bioresources, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Qian Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China.
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
2
|
Verstraete B, Janssens S, De Block P, Asselman P, Méndez G, Ly S, Hamon P, Guyot R. Metagenomics of African Empogona and Tricalysia (Rubiaceae) reveals the presence of leaf endophytes. PeerJ 2023; 11:e15778. [PMID: 37554339 PMCID: PMC10405798 DOI: 10.7717/peerj.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Background Leaf symbiosis is a phenomenon in which host plants of Rubiaceae interact with bacterial endophytes within their leaves. To date, it has been found in around 650 species belonging to eight genera in four tribes; however, the true extent in Rubiaceae remains unknown. Our aim is to investigate the possible occurrence of leaf endophytes in the African plant genera Empogona and Tricalysia and, if present, to establish their identity. Methods Total DNA was extracted from the leaves of four species of the Coffeeae tribe (Empogona congesta, Tricalysia hensii, T. lasiodelphys, and T. semidecidua) and sequenced. Bacterial reads were filtered out and assembled. Phylogenetic analysis of the endophytes was used to reveal their identity and their relationship with known symbionts. Results All four species have non-nodulated leaf endophytes, which are identified as Caballeronia. The endophytes are distinct from each other but related to other nodulated and non-nodulated endophytes. An apparent phylogenetic or geographic pattern appears to be absent in endophytes or host plants. Caballeronia endophytes are present in the leaves of Empogona and Tricalysia, two genera not previously implicated in leaf symbiosis. This interaction is likely to be more widespread, and future discoveries are inevitable.
Collapse
Affiliation(s)
| | - Steven Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Gabriela Méndez
- Grupo de Investigación (BIOARN), Universidad Politécnica Salesiana, Quito, Ecuador
- Facultad de ingenieria, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Serigne Ly
- DIADE, Université de Montpellier, Montpellier, France
| | - Perla Hamon
- DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
3
|
Sales AL, Cunha SC, Morgado J, Cruz A, Santos TF, Ferreira IM, Fernandes JO, Miguel MAL, Farah A. Volatile, Microbial, and Sensory Profiles and Consumer Acceptance of Coffee Cascara Kombuchas. Foods 2023; 12:2710. [PMID: 37509803 PMCID: PMC10379779 DOI: 10.3390/foods12142710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Given the substantial world coffee production, tons of coffee fruit cascara rich in bioactive compounds are discarded annually. Using this by-product to produce potentially healthy and acceptable foods is a sustainable practice that aggregates value to coffee production and may help improve people's lives. This study aimed to elaborate kombuchas from coffee cascara tea, evaluate their microbial profile, and monitor the changes in the volatile profile during fermentation, together with sensory attributes and acceptance by consumers from Rio de Janeiro (n = 113). Arabica coffee cascaras from Brazil and Nicaragua were used to make infusions, to which black tea kombucha, a Symbiotic Culture of Bacteria and Yeasts (SCOBY), and sucrose were added. Fermentation of plain black tea kombucha was also monitored for comparison. The volatile profile was analyzed after 0, 3, 6, and 9 days of fermentation via headspace solid phase microextraction GC-MS. A total of 81 compounds were identified considering all beverages, 59 in coffee cascara kombuchas and 59 in the black tea kombucha, with 37 common compounds for both. An increase mainly in acids and esters occurred during fermentation. Despite the similarity to black tea kombucha, some aldehydes, esters, alcohols, and ketones in coffee cascara kombucha were not identified in black tea kombucha. Potential impact compounds in CC were linalool, decanal, nonanal, octanal, dodecanal, ethanol, 2-ethylhexanol, ethyl acetate, ethyl butyrate, ethyl acetate, β-damascenone, γ-nonalactone, linalool oxide, phenylethyl alcohol, geranyl acetone, phenylacetaldehyde, isoamyl alcohol, acetic acid, octanoic acid, isovaleric acid, ethyl isobutyrate, ethyl hexanoate, and limonene. The mean acceptance scores for cascara kombuchas varied between 5.7 ± 0.53 and 7.4 ± 0.53 on a nine-point hedonic scale, with coffee cascara from three-day Nicaragua kombucha showing the highest score, associated with sweetness and berry, honey, woody, and herbal aromas and flavors. The present results indicate that coffee cascara is a promising by-product for elaboration of fermented beverages, exhibiting exotic and singular fingerprinting that can be explored for applications in the food industry.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Adriano Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20260-100, Brazil;
| | - Thiago F. Santos
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| |
Collapse
|
4
|
Braga AVU, Miranda MA, Aoyama H, Schmidt FL. Study on coffee quality improvement by self-induced anaerobic fermentation: Microbial diversity and enzymatic activity. Food Res Int 2023; 165:112528. [PMID: 36869528 DOI: 10.1016/j.foodres.2023.112528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The postharvest fermentation process of coffee has rapidly advanced in the last few years due to the search for quality and diversity of sensorial profiles. A new type of fermentation, named self-induced-anaerobic fermentation (SIAF), is a promising process that has been increasingly used. This study aims to evaluate the sensorial improvement of coffee beverages during SIAF and the influence of microorganism's community and enzymatic activity. The SIAF process was conducted in Brazilian farms for up to 8 days. The sensorial quality of coffee was evaluated by Q-graders; the microbial community was identified by the high-throughput sequencing of 16S rRNA and ITS regions; and the enzymatic activity (invertase, polygalacturonase, and endo-β-mannanase) was also investigated. SIAF increased up to 3.8 points in the total score of sensorial evaluation (compared to the non-fermented sample), in addition to presenting more flavor diversity (especially within the fruity and sweetness descriptors). The high-throughput sequencing identified 655 bacterial and 296 fungal species during the three processes. The bacteria Enterobacter sp., Lactobacillus sp., Pantoea sp., and the fungi Cladosporium sp. and Candida sp. were the predominant genera. Fungi that are potential producers of mycotoxin were identified throughout the process, which indicates a risk of contamination since some of them are not degraded in the roasting process. Thirty-one species of microorganisms were described for the first time in coffee fermentation. The microbial community was influenced by the place where the process was carried out, mainly in relation to the diversity of fungi. Washing the coffee fruits before fermenting led to a fast reduction of pH; a fast development of Lactobacillus sp. and a fast dominance of Candida sp.; a reduction of the fermentation time necessary to achieve the best sensorial score; an increase in the invertase activity in the seed; a more expressive invertase activity in the husk; and a decreasing trend in polygalacturonase activity in the coffee husk. The increase in endo-β-mannanase activity suggests that coffee starts germinating during the process. SIAF has a huge potential to increase the quality and add value to coffee, but further studies must be conducted to access its safety. The study allowed a better knowledge of the spontaneous microbial community and the enzymes that were present in the fermentation process.
Collapse
Affiliation(s)
- Ana Valéria Ulhano Braga
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil.
| | - Márcio André Miranda
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo. Rua Heitor Lacerda Guedes, n °1000 - ZIP Code 13059-581. Cidade Satélite Íris, Campinas, São Paulo, Brazil
| | - Hiroshi Aoyama
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| | - Flavio Luís Schmidt
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Coinoculation of lactic acid bacteria and yeasts increases the quality of wet fermented Arabica coffee. Int J Food Microbiol 2022; 369:109627. [DOI: 10.1016/j.ijfoodmicro.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
6
|
Borém FM, Abreu GFD, Alves APDC, Santos CMD, Teixeira DE. Volatile compounds indicating latent damage to sensory attributes in coffee stored in permeable and hermetic packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Mejía-Alvarado FS, Ghneim-Herrera T, Góngora CE, Benavides P, Navarro-Escalante L. Structure and Dynamics of the Gut Bacterial Community Across the Developmental Stages of the Coffee Berry Borer, Hypothenemus hampei. Front Microbiol 2021; 12:639868. [PMID: 34335487 PMCID: PMC8323054 DOI: 10.3389/fmicb.2021.639868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The coffee berry borer (CBB); Hypothenemus hampei (Coleoptera: Curculionidae), is widely recognized as the major insect pest of coffee crops. Like many other arthropods, CBB harbors numerous bacteria species that may have important physiological roles in host nutrition, detoxification, immunity and protection. To date, the structure and dynamics of the gut-associated bacterial community across the CBB life cycle is not yet well understood. A better understanding of the complex relationship between CBB and its bacterial companions may provide new opportunities for insect control. In the current investigation, we analyzed the diversity and abundance of gut microbiota across the CBB developmental stages under field conditions by using high-throughput Illumina sequencing of the 16S ribosomal RNA gene. Overall, 15 bacterial phyla, 38 classes, 61 orders, 101 families and 177 genera were identified across all life stages, including egg, larva 1, larva 2, pupa, and adults (female and male). Proteobacteria and Firmicutes phyla dominated the microbiota along the entire insect life cycle. Among the 177 genera, the 10 most abundant were members of Ochrobactrum (15.1%), Pantoea (6.6%), Erwinia (5.7%), Lactobacillus (4.3%), Acinetobacter (3.4%), Stenotrophomonas (3.1%), Akkermansia (3.0%), Agrobacterium (2.9%), Curtobacterium (2.7%), and Clostridium (2.7%). We found that the overall bacterial composition is diverse, variable within each life stage and appears to vary across development. About 20% of the identified OTUs were shared across all life stages, from which 28 OTUs were consistently found in all life stage replicates. Among these OTUs there are members of genera Pantoea, Erwinia, Agrobacterium, Ochrobactrum, Pseudomonas, Acinetobacter, Brachybacterium, Sphingomonas and Methylobacterium, which can be considered as the gut-associated core microbiota of H. hampei. Our findings bring additional data to enrich the understanding of gut microbiota in CBB and its possible use for development of insect control strategies.
Collapse
Affiliation(s)
- Fernan Santiago Mejía-Alvarado
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia.,Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | | | - Carmenza E Góngora
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | - Pablo Benavides
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | | |
Collapse
|
8
|
Pothakos V, De Vuyst L, Zhang SJ, De Bruyn F, Verce M, Torres J, Callanan M, Moccand C, Weckx S. Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Duong B, Nguyen HX, Phan HV, Colella S, Trinh PQ, Hoang GT, Nguyen TT, Marraccini P, Lebrun M, Duponnois R. Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiol Res 2020; 242:126613. [PMID: 33070050 DOI: 10.1016/j.micres.2020.126613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022]
Abstract
The endophytic bacteria were isolated from coffee roots and seeds in Vietnam and identified with 16S rDNA sequencing as belonging to the Actinobacteria, Firmicutes and Proteobacteria phyla with the Nocardia, Bacillus and Burkholderia as dominant genera, respectively. Out of the thirty genera recovered from Coffea canephora and Coffea liberica, twelve were reported for the first time in endophytic association with coffee including members of the genera Brachybacterium, Caballeronia, Kitasatospora, Lechevalieria, Leifsonia, Luteibacter, Lysinibacillus, Mycolicibacterium, Nakamurella, Paracoccus, Sinomonas and Sphingobium. A total of eighty bacterial endophytes were characterized in vitro for several plant growth promoting and biocontrol traits including: the phosphate solubilization, the indolic compounds, siderophores, HCN, esterase, lipase, gelatinase and chitinase production. A subset of fifty selected bacteria were tested for their potential as biocontrol agents with in vitro confrontations with the fungal pathogen Fusarium oxysporum as well as the coffee parasitic nematodes Radopholus duriophilus and Pratylenchus coffeae. The three most efficient isolates on F. oxysporum belonging to the Bacillus, Burkholderia, and Streptomyces genera displayed a growth inhibition rate higher than 40%. Finally, five isolates from the Bacillus genus were able to lead to 100% of mortality in 24 h on both R. duriophilus and P. coffeae.
Collapse
Affiliation(s)
- Benoit Duong
- LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France; LMI RICE-2, Univ. Montpellier, IRD, AGI, USTH, Hanoi, Viet Nam.
| | | | | | - Stefano Colella
- LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France.
| | - Phap Quang Trinh
- Institute of Ecology and Biological Resources, VAST, Hanoi, Viet Nam; Graduate Univ. of Science and Technology, VAST, Hanoi, Viet Nam.
| | - Giang Thi Hoang
- LMI RICE-2, Univ. Montpellier, IRD, AGI, USTH, Hanoi, Viet Nam; National Key Laboratory for Plant Cell Biotechnology, AGI, Hanoi, Viet Nam.
| | | | - Pierre Marraccini
- LMI RICE-2, Univ. Montpellier, IRD, AGI, USTH, Hanoi, Viet Nam; IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France.
| | - Michel Lebrun
- LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France; LMI RICE-2, Univ. Montpellier, IRD, AGI, USTH, Hanoi, Viet Nam.
| | - Robin Duponnois
- LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France.
| |
Collapse
|
10
|
Mansour A, Mohajeri-Tehrani MR, Karimi S, Sanginabadi M, Poustchi H, Enayati S, Asgarbeik S, Nasrollahzadeh J, Hekmatdoost A. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial. EXCLI JOURNAL 2020; 19:241-250. [PMID: 32256270 PMCID: PMC7105939 DOI: 10.17179/excli2019-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to determine the effects of caffeine and chlorogenic acid supplementation on gut microbiota, and metabolic disturbances in patients with NAFLD and diabetes. In this randomized, placebo-controlled, clinical trial, 26 patients with diabetes and NAFLD were randomly assigned to four groups to receive either 200 mg caffeine plus 200 mg chlorogenic acid (CFCA), or 200 mg caffeine plus 200 mg placebo (starch) (CFPL), or 200 mg chlorogenic acid plus 200 mg placebo (CAPL), or 200 mg placebo plus 200 mg placebo (PLPL) for 12 weeks. After 3 months of supplementation, patients in the intervention groups showed a significant decrease in body weight (CFCA group =-3.69 kg; CFPL group=-0.7kg; CAPL group=-0.43kg; PLPL group=0.26 kg) (p=0.004). Weight reduced significantly more in CFCA group compared to all other three groups (p=0.005 for PLPL; p=0.023 for CAPL; and p=0.031 for CFPL). Although the number of gut Bifidobacteria increased in CFCA group, there were no statistically significant differences within and between the groups in any of bacteria numbers. In conclusion, our study showed that 12 weeks consumption of 200 mg/day caffeine plus 200 mg/day chlorogenic acid is effective in reduction of weight in patients with NAFLD and diabetes which might be at least partially through the rise in gut Bifidobacteria. This pilot study shed a light on the pathway of future clinical trials assessing the effects of coffee consumption in these patients. This trial has been registered at clinicaltrial.gov with registration number of NCT02929901.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Milad Sanginabadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Asgarbeik
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
11
|
Zhang SJ, De Bruyn F, Pothakos V, Contreras GF, Cai Z, Moccand C, Weckx S, De Vuyst L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front Microbiol 2019; 10:2621. [PMID: 31798557 PMCID: PMC6863779 DOI: 10.3389/fmicb.2019.02621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Post-harvest wet coffee processing is a commonly applied method to transform coffee cherries into green coffee beans through depulping or demucilaging, fermentation, washing, soaking, drying, and dehulling. Multiple processing parameters can be modified and thus influence the coffee quality (green coffee beans and cup quality). The present study aimed to explore the impacts of these parameters, including processing type (depulping or demucilaging), fermentation duration, and application of soaking, on the microbial community dynamics, metabolite compositions of processing waters (fermentation and soaking) and coffee beans, and resulting cup quality through a multiphasic approach. A large-scale wet coffee processing experiment was conducted with Coffea arabica var. Catimor in Yunnan (China) in duplicate. The fermentation steps presented a dynamic interaction between constant nutrient release (mainly from the cherry mucilage) into the surrounding water and active microbial activities led by lactic acid bacteria, especially Leuconostoc and Lactococcus. The microbial communities were affected by both the processing type and fermentation duration. At the same time, the endogenous coffee bean metabolism remained active at different stages along the processing, as could be seen through changes in the concentrations of carbohydrates, organic acids, and free amino acids. Among all the processing variants tested, the fermentation duration had the greatest impact on the green coffee bean compositions and the cup quality. A long fermentation duration resulted in a fruitier and more acidic cup. As an ecological alternative for the depulped processing, the demucilaged processing produced a beverage quality comparable to the depulped one. The application of soaking, however, tempered the positive fermentation effects and standardized the green coffee bean quality, regardless of the preceding processing practices applied. Lastly, the impact strength of each processing parameter would also depend on the coffee variety used and the local geographical conditions. All these findings provide a considerable margin of opportunities for future coffee research.
Collapse
Affiliation(s)
- Sophia Jiyuan Zhang
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florac De Bruyn
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vasileios Pothakos
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Zhiying Cai
- Yunnan Institute of Tropical Crops, Kunming, China
| | | | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Tinoco NAB, Pacheco S, Godoy RLO, Bizzo HR, de Aguiar PF, Leite SGF, Rezende CM. Reduction of βN-alkanoyl-5-hydroxytryptamides and diterpenes by yeast supplementation to green coffee during wet processing. Food Res Int 2019; 115:487-492. [PMID: 30599969 DOI: 10.1016/j.foodres.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Coffee is one of the most consumed non-alcoholic beverages in the world. It is well known that some compounds present in coffee beans have important biological activities. In this study, evidence was turned to βN-alkanoyl-5-hydroxytryptamides (C-5HTs) and to the furokaurane diterpenes cafestol and kahweol, associated with gastric irritation and increasing of blood cholesterol, respectively. Fermentation in coffee post-harvest wet process was induced by three Saccharomyces cerevisiae yeasts (for bakery, white and sparkling wines) as starter cultures. Variations in mass, time, temperature and pH (56 experiments under fractional factorial and mixture experimental designs) were tested. Substantial reductions for C-5HTs (up to 38% reduction for C20-5HT and 26% for C22-5HT) as well as for diterpenes (54% for cafestol and 53% for kahweol) were obtained after treating green coffee beans with 0.6 g of a 1:1:1 mixture the three yeasts for 12 h at 15 °C and pH 4. Caffeine and 5-CQA content, monitored in the green coffee beans, did not change. Therefore, the use of starter cultures during coffee post-harvest wet process has influence on the amount of some important compounds related to health and improves the sensory quality of the beverage.
Collapse
Affiliation(s)
- Natália A B Tinoco
- Chemistry Institute, Federal University of Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| | - Sidney Pacheco
- Embrapa Agroindústria de Alimentos, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Ronoel L O Godoy
- Embrapa Agroindústria de Alimentos, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Humberto R Bizzo
- Embrapa Agroindústria de Alimentos, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Paula F de Aguiar
- Chemistry Institute, Federal University of Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| | - Selma G F Leite
- Chemistry School, Federal University of Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Claudia M Rezende
- Chemistry Institute, Federal University of Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Microbiological and chemical-sensory characteristics of three coffee varieties processed by wet fermentation. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
14
|
Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Sousa LPD, da Silva MJD, Mondego JMC. Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 2018; 41:455-465. [PMID: 29782032 PMCID: PMC6082234 DOI: 10.1590/1678-4685-gmb-2017-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/14/2017] [Indexed: 01/16/2023] Open
Abstract
Coffee is one of the most valuable agricultural commodities and the plants’
leaves are the primary site of infection for most coffee diseases, such as the
devastating coffee leaf rust. Therefore, the use of bacterial microbiota that
inhabits coffee leaves to fight infections could be an alternative agricultural
method to protect against coffee diseases. Here, we report the leaf-associated
bacteria in three coffee genotypes over the course of a year, with the aim to
determine the diversity of bacterial microbiota. The results indicate a
prevalence of Enterobacteriales in Coffea canephora,
Pseudomonadales in C. arabica ‘Obatã’, and an intriguing lack
of bacterial dominance in C. arabica ‘Catuaí’. Using PERMANOVA
analyses, we assessed the association between bacterial abundance in the coffee
genotypes and environmental parameters such as temperature, precipitation, and
mineral nutrients in the leaves. We detected a close relationship between the
amount of Mn and the abundance of Pseudomonadales in ‘Obatã’ and the amount of
Ca and the abundance of Enterobacteriales in C. canephora. We
suggest that mineral nutrients can be key drivers that shape leaf microbial
communities.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Campinas, SP, Brazil.,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio José da da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
16
|
Gao T, Shi XY. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Arch Microbiol 2018; 200:869-876. [PMID: 29455240 DOI: 10.1007/s00203-018-1493-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
The present study investigated the endophytic bacterial communities in the seeds of mature, natural common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Additionally, seed endophytic bacterial communities were compared with rhizospheric and root endophytic bacterial communities using Illumina-based sequencing. Seed endophytic bacterial communities were dominated by Proteobacteria (reed, 41.24%; cattail, 45.51%), followed by Bacteroidetes (reed, 12.01%; cattail, 10.41%), Planctomycetes (reed, 10.36%; cattail, 9.09%), Chloroflexi (reed, 8.72%; cattail, 6.45%), Thermotogae (reed, 5.43%; cattail, 6.11%), Tenericutes (reed, 3.63%; cattail, 3.97%) and Spirochaetes (reed, 3.32%; cattail, 3.90%). The dominant genera were Desulfobacter (reed, 8.02%; cattail, 8.96%), Geobacter (reed, 2.74%; cattail, 2.81%), Thiobacillus (reed, 2.71%; cattail, 2.41%), Sulfurimonas (reed, 2.47%; cattail, 2.31%), Methyloversatilis (reed, 2.29%; cattail, 2.05%) and Dechloromonas (reed, 1.13%; cattail, 1.48%). Obvious distinctions were observed among the respective rhizospheric, root endophytic and seed endophytic bacterial communities. Principal coordinate analysis with weighted UniFrac distance and the heat map analysis demonstrated that the seed endophytic bacterial communities were distinct assemblages rather than a subgroup of rhizobacterial communities or root endophytic bacterial communities. These results provide new information regarding endophytic bacteria associated with seeds of wetland plants and demonstrate a variety of genera that have a strong potential to enhance phytoremediation in the wetland ecosystem.
Collapse
Affiliation(s)
- Ting Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xian-Yang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
17
|
Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl Environ Microbiol 2016; 83:AEM.02398-16. [PMID: 27793826 DOI: 10.1128/aem.02398-16] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022] Open
Abstract
The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process. IMPORTANCE Coffee production is a long process, starting with the harvest of coffee cherries and the on-farm drying of their beans. In a later stage, the dried green coffee beans are roasted and ground in order to brew a cup of coffee. The on-farm, postharvest processing method applied can impact the quality of the green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through wet and dry processing in four distinct variations. The microorganisms present and the chemical profiles of the coffee beans were analyzed throughout the postharvest processing chain. The up-to-date techniques implemented facilitated the investigation of differences related to the method applied. For instance, different microbial groups were associated with wet and dry processing methods. Additionally, metabolites associated with the respective microorganisms accumulated on the final green coffee beans.
Collapse
|
18
|
Poltronieri P, Rossi F. Challenges in Specialty Coffee Processing and Quality Assurance. CHALLENGES 2016; 7:19. [DOI: 10.3390/challe7020019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Silva MCSE, Polonio JC, Quecine MC, Almeida TTD, Bogas AC, Pamphile JA, Pereira JO, Astolfi-Filho S, Azevedo JL. Endophytic cultivable bacterial community obtained from the Paullinia cupana seed in Amazonas and Bahia regions and its antagonistic effects against Colletotrichum gloeosporioides. Microb Pathog 2016; 98:16-22. [PMID: 27343372 DOI: 10.1016/j.micpath.2016.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/17/2023]
Abstract
Guarana (Paullinia cupana var. sorbilis) is a plant from the Amazonas region with socio-economic importance. However, guarana production has been increasingly affected by unfavorable conditions resulting from anthracnose, caused by the Colletotrichum fungal genus, which primarily affects mainly the Amazonas region. The aim of the present study was to isolate bacterial endophytes from the seeds of guarana plants obtained from Amazonas region and the Northeast state of Bahia, a region where this disease is not a problem for guarana plantations. The number of bacterial Colony Forming Units (CFU/g seeds) was 2.4 × 10(4) from the Bahia and 2.9 × 10(4) from the Amazonas region. One hundred and two isolated bacteria were evaluated in vitro against the phytopathogenic strain Colletotrichum gloeosporioides L1. These isolates were also analyzed for the enzymatic production of amylase, cellulase, protease, pectinase, lipase and esterase. Approximately 15% of isolates, showing high antagonistic activity, and the production of at least one enzyme were identified through the partial sequencing of 16S rDNA. The genus Bacillus was the most frequently observed, followed by Paenibacillus, Ochrobactrum, Microbacterium and Stenotrophomonas. Proteolytic activity was observed in 24 isolates followed by amylolytic, pectinolytic and cellulolytic activities. No esterase and lipase production was detected. Most of the isolates, showing antagonistic effects against C. gloeosporioides and high enzymatic activities, were isolated from the anthracnose-affected region. A biocontrol method using the endophytes from guarana seeds could be applied in the future, as these bacteria are vertically transferred to guarana seedlings.
Collapse
Affiliation(s)
- Maria Carolina Santos E Silva
- Departamento de Genética, ESALQ - Escola Superior de Agricultura "Luiz de Queiroz" - USP, CEP 13418-900, Piracicaba, SP, Brazil
| | - Julio Cesar Polonio
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biotecnologia Microbiana, Universidade Estadual de Maringá, CEP 87020-900, Maringá, Paraná, Brazil
| | - Maria Carolina Quecine
- Departamento de Genética, ESALQ - Escola Superior de Agricultura "Luiz de Queiroz" - USP, CEP 13418-900, Piracicaba, SP, Brazil
| | - Tiago Tognolli de Almeida
- Departamento de Genética, ESALQ - Escola Superior de Agricultura "Luiz de Queiroz" - USP, CEP 13418-900, Piracicaba, SP, Brazil
| | - Andréa Cristina Bogas
- Departamento de Genética, ESALQ - Escola Superior de Agricultura "Luiz de Queiroz" - USP, CEP 13418-900, Piracicaba, SP, Brazil
| | - João Alencar Pamphile
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biotecnologia Microbiana, Universidade Estadual de Maringá, CEP 87020-900, Maringá, Paraná, Brazil.
| | - José Odair Pereira
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, CEP 69077-000, Manaus, AM, Brazil
| | - Spartaco Astolfi-Filho
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, CEP 69077-000, Manaus, AM, Brazil
| | - João Lucio Azevedo
- Departamento de Genética, ESALQ - Escola Superior de Agricultura "Luiz de Queiroz" - USP, CEP 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|