1
|
Thombare VJ, Swarbrick JD, Azad MAK, Zhu Y, Lu J, Yu HY, Wickremasinghe H, He X, Bandiatmakur M, Li R, Bergen PJ, Velkov T, Wang J, Roberts KD, Li J, Patil NA. Exploring Structure-Activity Relationships and Modes of Action of Laterocidine. ACS CENTRAL SCIENCE 2024; 10:1703-1717. [PMID: 39345814 PMCID: PMC11428279 DOI: 10.1021/acscentsci.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
A significant increase in life-threatening infections caused by Gram-negative "superbugs" is a serious threat to global health. With a dearth of new antibiotics in the developmental pipeline, antibiotics with novel mechanisms of action are urgently required to prevent a return to the preantibiotic era. A key strategy to develop novel anti-infective treatments is to discover new natural scaffolds with distinct mechanisms of action. Laterocidine is a unique cyclic lipodepsipeptide with activity against multiple problematic multidrug-resistant Gram-negative pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Here, we developed a total chemical synthesis methodology for laterocidine and undertook systematic structure-activity relationship studies with chemical biology and NMR. We discovered important structural features that drive the antimicrobial activity of laterocidine, leading to the discovery of an engineered peptide surpassing the efficacy of the original peptide. This engineered peptide demonstrated complete inhibition of the growth of a polymyxin-resistant strain of Pseudomonas aeruginosa in static time-kill experiments.
Collapse
Affiliation(s)
- Varsha J Thombare
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - James D Swarbrick
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Lu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Heidi Y Yu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mahimna Bandiatmakur
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Rong Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Ogunsile A, Songnaka N, Sawatdee S, Lertcanawanichakul M, Krobthong S, Yingchutrakul Y, Uchiyama J, Atipairin A. Anti-methicillin-resistant Staphylococcus aureus and antibiofilm activity of new peptides produced by a Brevibacillus strain. PeerJ 2023; 11:e16143. [PMID: 37810790 PMCID: PMC10552749 DOI: 10.7717/peerj.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.
Collapse
Affiliation(s)
- Abiodun Ogunsile
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Han P, Ma A, Ning Y, Chen Z, Liu Y, Liu Z, Li S, Jia Y. Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
6
|
Okoth DA, Hug JJ, Garcia R, Müller R. Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms 2022; 10:microorganisms10101959. [PMID: 36296235 PMCID: PMC9611931 DOI: 10.3390/microorganisms10101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation.
Collapse
Affiliation(s)
- Dorothy A. Okoth
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Chemistry, School of Physical and Biological Sciences, Main campus, Maseno University, Maseno P.O. Box 333-40105, Kenya
| | - Joachim J. Hug
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
7
|
Liu Y, Han P, Jia Y, Chen Z, Li S, Ma A. Antibacterial Regularity Mining Beneath the Systematic Activity Database of Lipopeptides Brevilaterins: An Instructive Activity Handbook for Its Food Application. Foods 2022; 11:foods11192991. [PMID: 36230066 PMCID: PMC9563055 DOI: 10.3390/foods11192991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial contamination is a primary threat to food safety. Therefore, the persistent development of natural antibacterial agents has become essential work. The present essay attempts to establish a systematic antibacterial activity database to instruct the food application of brevilaterins, promising antibacterial lipopeptides from Brevibacillus laterosporus S62-9. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were systematically collected from 43 species of standard bacteria and 140 strains of isolated bacteria (food spoilage bacteria and antibiotic-resistant bacteria) using a broth dilution method. The results showed that brevilaterins performed a broad-spectrum inhibitory (0.5~128 μg/mL) and bactericidal activity (1~256 μg/mL), especially efficient against Gram-positive bacteria and spoilage bacteria from grain products. Moreover, brevilaterins not only inhibit and kill multiple antibiotic-resistant bacteria but do not readily develop resistance, with a small specific value of MBC/MIC (1~8). Furthermore, brevilaterins would interact with negatively charged sodium dodecyl sulfate and bind amphipathic soybean phospholipid with an affinity constant of KD = 4.70 × 10−4 M. No significant activity difference was found between brevilaterin B and brevilaterin C. Collectively, this work contributed rich antibacterial data of brevilaterins and revealed the antibacterial regularity beneath these data, which can be used as an activity handbook to instruct their application in food safety.
Collapse
|
8
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. Structural Organization of Brevilaterin Biosynthesis in Brevibacillus laterosporus S62-9: A Novel MbtH-Independent Cationic Antimicrobial Peptide Synthetase System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7471-7478. [PMID: 35675382 DOI: 10.1021/acs.jafc.2c01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cationic antimicrobial peptides, produced by nonribosomal peptide synthetases (NRPSs), have received great attention in different applications, including as biocontrol and antimicrobial agents against foodborne pathogenic bacteria. Also, Brevibacillus spp. is a competent microorganism to produce cationic antimicrobial peptides yet has received little attention. Herein, Brevibacillus laterosporus S62-9 genome mining revealed an integrated cationic antimicrobial peptide synthetase system that synthesized brevilaterin. Combining biochemical analysis with bioinformatics elucidated that the A domain from this system was the MbtH-independent enzyme and showed activity against the same amino acid in the structure of brevilaterin. Moreover, the creations of the first three and position 12 residues in the sequence were targeted to bre261, bre270, bre2691A, and bre2662, respectively. Further analysis of the specificity-conferring code of the A domain suggested that a tiny difference would make the activity of the A domain very diverse and the range of substrate selection would be enlarged or narrowed by changing some residues in the code. The dissection of this biosynthesis mechanism would contribute to the successful realization of reasonable artificial design and the modification of bioactive peptides, and this capable organism also would be more fully utilized.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
9
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
10
|
Zhao X, Wang X, Shukla R, Kumar R, Weingarth M, Breukink E, Kuipers OP. Brevibacillin 2V, a Novel Antimicrobial Lipopeptide With an Exceptionally Low Hemolytic Activity. Front Microbiol 2021; 12:693725. [PMID: 34220785 PMCID: PMC8245773 DOI: 10.3389/fmicb.2021.693725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial non-ribosomally produced peptides (NRPs) form a rich source of antibiotics, including more than 20 of these antibiotics that are used in the clinic, such as penicillin G, colistin, vancomycin, and chloramphenicol. Here we report the identification, purification, and characterization of a novel NRP, i.e., brevibacillin 2V (lipo-tridecapeptide), from Brevibacillus laterosporus DSM 25. Brevibacillin 2V has a strong antimicrobial activity against Gram-positive bacterial pathogens (minimum inhibitory concentration = 2 mg/L), including difficult-to-treat antibiotic-resistant Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus. Notably, brevibacillin 2V has a much lower hemolytic activity (HC50 > 128 mg/L) and cytotoxicity (CC50 = 45.49 ± 0.24 mg/L) to eukaryotic cells than previously reported NRPs of the lipo-tridecapeptide family, including other brevibacillins, which makes it a promising candidate for antibiotic development. In addition, our results demonstrate that brevibacillins display a synergistic action with established antibiotics against Gram-negative bacterial pathogens. Probably due to the presence of non-canonical amino acids and D-amino acids, brevibacillin 2V showed good stability in human plasma. Thus, we identified and characterized a novel and promising antimicrobial candidate (brevibacillin 2V) with low hemolytic activity and cytotoxicity, which can be used either on its own or as a template for further total synthesis and modification.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rhythm Shukla
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands.,NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Zhao X, Kuipers OP. BrevicidineB, a New Member of the Brevicidine Family, Displays an Extended Target Specificity. Front Microbiol 2021; 12:693117. [PMID: 34177875 PMCID: PMC8219939 DOI: 10.3389/fmicb.2021.693117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) has formed a rich source for drug development. Brevicidine, a bacterial non-ribosomally produced cyclic lipo-dodecapeptide, displays selective antimicrobial activity against Gram-negative pathogens. Here, we show that brevicidineB, which contains a single substitution (Tyr2 to Phe2) in the amino acid sequence of the linear part of brevicidine, has a broadened antimicrobial spectrum, showing bactericidal activity against both Gram-negative (with a MIC value of 2 to 4 mg/L) and Gram-positive (with a MIC value of 2 to 8 mg/L) pathogens. Compared with an earlier reported member of the brevicidine family, the broadened antimicrobial spectrum of brevicidineB is caused by its increased membrane disruptive capacity on Gram-positive pathogens, which was evidenced by fluorescence microscopy assays. In addition, DiSC3(5) and resazurin assays show that brevicidine and brevicidineB exert their antimicrobial activity against Gram-negative bacteria via disrupting the proton motive force of cells. Notably, as a brevicidine family member, brevicidineB also showed neither hemolytic activity nor cytotoxicity at a high concentration of 64 mg/L. This study provides a promising antibiotic candidate (brevicidineB) with a broad antimicrobial spectrum, and provides novel insights into the antimicrobial mode of action of brevicidines.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|