1
|
Das D, Duncton MAJ, Georgiadis TM, Pellicena P, Clark J, Sobol RW, Georgiadis MM, King-Underwood J, Jobes DV, Chang C, Gao Y, Deacon AM, Wilson DM. A New Drug Discovery Platform: Application to DNA Polymerase Eta and Apurinic/Apyrimidinic Endonuclease 1. Int J Mol Sci 2023; 24:16637. [PMID: 38068959 PMCID: PMC10706420 DOI: 10.3390/ijms242316637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.
Collapse
Affiliation(s)
- Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | | | | | | | - Jennifer Clark
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology & Laboratory Medicine, Warrant Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Millie M. Georgiadis
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - David V. Jobes
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Mid-Atlantic BioTherapeutics, Inc., Doylestown, PA 18902, USA
| | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashley M. Deacon
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | - David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Biomedical Research Institute, Hasselt University, 3500 Diepenbeek, Belgium
- Belgium & Boost Scientific, 3550 Heusden-Zolder, Belgium
| |
Collapse
|
2
|
ZHUANG YAN, NING CHUNLAN, LIU PENGFEI, ZHAO YANPENG, LI YUE, MA ZHENCHI, SHAN LULING, PIAO YINGZHE, ZHAO PENG, JIN XUN. LSM12 facilitates the progression of colorectal cancer by activating the WNT/CTNNB1 signaling pathway. Oncol Res 2023; 30:289-300. [PMID: 37303493 PMCID: PMC10207973 DOI: 10.32604/or.2022.028225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Aberrant activation of the WNT signaling pathway is a joint event in colorectal cancer (CRC), but the molecular mechanism is still unclear. Recently, RNA-splicing factor LSM12 (like-Sm protein 12) is highly expressed in CRC tissues. This study aimed to verify whether LSM12 is involved in regulating CRC progression via regulating the WNT signaling pathway. Here, we found that LSM12 is highly expressed in CRC patient-derived tissues and cells. LSM12 is involved in the proliferation, invasion, and apoptosis of CRC cells, similar to the function of WNT signaling in CRC. Furthermore, protein interaction simulation and biochemical experiments proved that LSM12 directly binds to CTNNB1 (also known as β-Catenin) and regulates its protein stability to affect the CTTNB1-LEF1-TCF1 transcriptional complex formation and the associated WNT downstream signaling pathway. LSM12 depletion in CRC cells decreased the in vivo tumor growth through repression of cancer cell growth and acceleration of cancer cell apoptosis. Taken together, we suggest that the high expression of LSM12 is a novel factor leading to aberrant WNT signaling activation, and that strategies targeting this molecular mechanism may contribute to developing a new therapeutic method for CRC.
Collapse
Affiliation(s)
- YAN ZHUANG
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - CHUNLAN NING
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin Medical University, Tianjin, 300070, China
| | - PENGFEI LIU
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - YANPENG ZHAO
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, 300381, China
| | - YUE LI
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - ZHENCHI MA
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - LULING SHAN
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - YINGZHE PIAO
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, China
| | - PENG ZHAO
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - XUN JIN
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
3
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
4
|
Zhang HC, Zhang R, Shi H. The effect of manganese and iron on mediating resuscitation of lactic acid-injured Escherichia coli. Lett Appl Microbiol 2022; 75:161-170. [PMID: 35395105 DOI: 10.1111/lam.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023]
Abstract
Lactic acid can induce sublethal injury of E. coli through oxidative stress. In this study, we investigated changes in SOD activity, CAT activity, GSH production and ROS production during sublethal injury and resuscitation of E. coli. Then, the effect of manganese and iron during resuscitation were studied. Both cations (≥1 mmol l-1 ) significantly promoted the resuscitation of sublethally injured E. coli induced by lactic acid and shortened the repair time (P < 0·05). Conversely, addition of N,N,N',N'-tetrakis (2-pyridylmethyl) which is a metal chelator extended the repair time. Compared with minA, manganese and iron significantly improved SOD activity at 40, 80 and 120 min and decreased ROS production at 40 and 80 min, thereby recovering injured E. coli quickly (P < 0·05). The deletion of sodA encoding Mn-SOD, sodB encoding Fe-SOD or gshA/gshB encoding GSH significantly strengthened sublethal injury and extended the repair time (P < 0·05). It meant these genes-related oxidative stress played important roles in the acid resistance of E. coli and recovery of sublethal injury. Therefore, manganese and iron can promote the recovery of lactic-injured E. coli by the way of increasing SOD activity, scavenging ROS, and relieving oxidative stress.
Collapse
Affiliation(s)
- H C Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - R Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - H Shi
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Mediator Engineering of Saccharomyces cerevisiae To Improve Multidimensional Stress Tolerance. Appl Environ Microbiol 2022; 88:e0162721. [PMID: 35369708 DOI: 10.1128/aem.01627-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is a well-performing workhorse in chemical production, which encounters complex environmental stresses during industrial processes. We constructed a multiple stress tolerance mutant, Med15V76R/R84K, that was obtained by engineering the KIX domain of Mediator tail subunit Med15. Med15V76R/R84K interacted with transcription factor Hap5 to improve ARV1 expression for sterol homeostasis for decreasing membrane fluidity and thereby enhancing acid tolerance. Med15V76R/R84K interacted with transcription factor Mga2 to improve GIT1 expression for phospholipid biosynthesis for increasing membrane integrity and thereby improving oxidative tolerance. Med15V76R/R84K interacted with transcription factor Aft1 to improve NFT1 expression for inorganic ion transport for reducing membrane permeability and thereby enhancing osmotic tolerance. Based on this Med15 mutation, Med15V76R/R84K, the engineered S. cerevisiae strain, showed a 28.1% increase in pyruvate production in a 1.0-L bioreactor compared to that of S. cerevisiae with its native Med15. These results indicated that Mediator engineering provides a potential alternative for improving multidimensional stress tolerance in S. cerevisiae. IMPORTANCE This study identified the role of the KIX domain of Mediator tail subunit Med15 in response to acetic acid, H2O2, and NaCl in S. cerevisiae. Engineered KIX domain by protein engineering, the mutant strain Med15V76R/R84K, increased multidimensional stress tolerance and pyruvate production compared with that of S. cerevisiae with its native Med15. The Med15V76R/R84K could increase membrane related genes expression possibly by enhancing interaction with transcription factor to improve membrane physiological functions under stress conditions.
Collapse
|
6
|
Wilson DM, Duncton MAJ, Chang C, Lee Luo C, Georgiadis TM, Pellicena P, Deacon AM, Gao Y, Das D. Early Drug Discovery and Development of Novel Cancer Therapeutics Targeting DNA Polymerase Eta (POLH). Front Oncol 2021; 11:778925. [PMID: 34900730 PMCID: PMC8653755 DOI: 10.3389/fonc.2021.778925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polymerase eta (or Pol η or POLH) is a specialized DNA polymerase that is able to bypass certain blocking lesions, such as those generated by ultraviolet radiation (UVR) or cisplatin, and is deployed to replication foci for translesion synthesis as part of the DNA damage response (DDR). Inherited defects in the gene encoding POLH (a.k.a., XPV) are associated with the rare, sun-sensitive, cancer-prone disorder, xeroderma pigmentosum, owing to the enzyme's ability to accurately bypass UVR-induced thymine dimers. In standard-of-care cancer therapies involving platinum-based clinical agents, e.g., cisplatin or oxaliplatin, POLH can bypass platinum-DNA adducts, negating benefits of the treatment and enabling drug resistance. POLH inhibition can sensitize cells to platinum-based chemotherapies, and the polymerase has also been implicated in resistance to nucleoside analogs, such as gemcitabine. POLH overexpression has been linked to the development of chemoresistance in several cancers, including lung, ovarian, and bladder. Co-inhibition of POLH and the ATR serine/threonine kinase, another DDR protein, causes synthetic lethality in a range of cancers, reinforcing that POLH is an emerging target for the development of novel oncology therapeutics. Using a fragment-based drug discovery approach in combination with an optimized crystallization screen, we have solved the first X-ray crystal structures of small novel drug-like compounds, i.e., fragments, bound to POLH, as starting points for the design of POLH inhibitors. The intrinsic molecular resolution afforded by the method can be quickly exploited in fragment growth and elaboration as well as analog scoping and scaffold hopping using medicinal and computational chemistry to advance hits to lead. An initial small round of medicinal chemistry has resulted in inhibitors with a range of functional activity in an in vitro biochemical assay, leading to the rapid identification of an inhibitor to advance to subsequent rounds of chemistry to generate a lead compound. Importantly, our chemical matter is different from the traditional nucleoside analog-based approaches for targeting DNA polymerases.
Collapse
Affiliation(s)
- David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA, United States
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium & Boost Scientific, Heusden-Zolder, Belgium
| | | | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Christie Lee Luo
- Department of BioSciences, Rice University, Houston, TX, United States
| | | | | | | | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA, United States
| |
Collapse
|
7
|
Schmitt K, Kraft AA, Valerius O. A Multi-Perspective Proximity View on the Dynamic Head Region of the Ribosomal 40S Subunit. Int J Mol Sci 2021; 22:ijms222111653. [PMID: 34769086 PMCID: PMC8583833 DOI: 10.3390/ijms222111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
A comparison of overlapping proximity captures at the head region of the ribosomal 40S subunit (hr40S) in Saccharomyces cerevisiae from four adjacent perspectives, namely Asc1/RACK1, Rps2/uS5, Rps3/uS3, and Rps20/uS10, corroborates dynamic co-localization of proteins that control activity and fate of both ribosomes and mRNA. Co-locating factors that associate with the hr40S are involved in (i) (de)ubiquitination of ribosomal proteins (Hel2, Bre5-Ubp3), (ii) clamping of inactive ribosomal subunits (Stm1), (iii) mRNA surveillance and vesicular transport (Smy2, Syh1), (iv) degradation of mRNA (endo- and exonucleases Ypl199c and Xrn1, respectively), (v) autophagy (Psp2, Vps30, Ykt6), and (vi) kinase signaling (Ste20). Additionally, they must be harmonized with translation initiation factors (eIF3, cap-binding protein Cdc33, eIF2A) and mRNA-binding/ribosome-charging proteins (Scp160, Sro9). The Rps/uS-BioID perspectives revealed substantial Asc1/RACK1-dependent hr40S configuration indicating a function of the β-propeller in context-specific spatial organization of this microenvironment. Toward resolving context-specific constellations, a Split-TurboID analysis emphasized the ubiquitin-associated factors Def1 and Lsm12 as neighbors of Bre5 at hr40S. These shuttling proteins indicate a common regulatory axis for the fate of polymerizing machineries for the biosynthesis of proteins in the cytoplasm and RNA/DNA in the nucleus.
Collapse
|
8
|
Sml1 Inhibits the DNA Repair Activity of Rev1 in Saccharomyces cerevisiae during Oxidative Stress. Appl Environ Microbiol 2020; 86:AEM.02838-19. [PMID: 32005731 DOI: 10.1128/aem.02838-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress.IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.
Collapse
|