1
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Tamang JP, Das S, Kharnaior P, Pariyar P, Thapa N, Jo SW, Yim EJ, Shin DH. Shotgun metagenomics of Cheonggukjang, a fermented soybean food of Korea: Community structure, predictive functionalities and amino acids profile. Food Res Int 2022; 151:110904. [PMID: 34980421 DOI: 10.1016/j.foodres.2021.110904] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Cheonggukjang is a naturally fermented soybean food of Korea. The present study was aimed to reveal the whole microbial community structure of naturally fermented cheonggukjang along with the prediction of microbial functional profiles by shotgun metagenomic sequence analysis. Metataxonomic profile of cheonggukjang samples showed different domains viz. bacteria (95.83%), virus (2.26%), unclassified (1.84%), eukaryotes (0.05%) and archaea (0.005%). Overall, 44 phyla, 286 families, 722 genera and 1437 species were identified. Firmicutes was the most abundant phylum (98.04%) followed by Proteobacteria (1.49%), Deinococcus-Thermus (0.14%). Bacillus thermoamylovorans was the most abundant species in cheonggukjang followed by Bacillus licheniformis, Bacillus glycinifermentans, Bacillus subtilis, Bacillus paralicheniformis, Bacillus amyloliquifaciens, Brevibacillus borstelensis, Brevibacillus sonorensis Brevibacillus, Acinetobacter, Carnobacterium, Paenibacillus, Cronobacter Enterococcus, Enterobacter, Terriglobus, Psychrobacter and Virgibacillus. A colossal diversity of the genus Bacillus was detected with 150 species. Functional analysis of cheonggukjang metagenome revealed the genes for the synthesis and metabolism of wide range of bioactive compounds including, various essential amino acids, conjugated amino acids, different vitamins, flavonoids, and enzymes. Amino acid profiles obtained from KEGG annotation in cheonggukjang were validated with experimental result of amino acid profiles.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| | - Souvik Das
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Pynhunlang Kharnaior
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Priyambada Pariyar
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Sikkim University, Tadong 737102, Sikkim, India.
| | - Seung-Wha Jo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Eun-Jung Yim
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Dong-Hwa Shin
- Shindonghwa Food Research Institute, Seoul 06192, Republic of Korea
| |
Collapse
|
3
|
Tamang JP, Kharnaior P, Pariyar P, Thapa N, Lar N, Win KS, Mar A, Nyo N. Shotgun sequence-based metataxonomic and predictive functional profiles of Pe poke, a naturally fermented soybean food of Myanmar. PLoS One 2021; 16:e0260777. [PMID: 34919575 PMCID: PMC8682898 DOI: 10.1371/journal.pone.0260777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Pe poke is a naturally fermented sticky soybean food of Myanmar. The present study was aimed to profile the whole microbial community structure and their predictive gene functionality of pe poke samples prepared in different fermentation periods viz. 3 day (3ds), 4 days (4ds), 5 days (5ds) and sun-dried sample (Sds). The pH of samples was 7.6 to 8.7, microbial load was 2.1-3.9 x 108 cfu/g with dynamic viscosity of 4.0±1.0 to 8.0±1.0cP. Metataxonomic profile of pe poke samples showed different domains viz. bacteria (99.08%), viruses (0.65%), eukaryota (0.08%), archaea (0.03%) and unclassified sequences (0.16%). Firmicutes (63.78%) was the most abundant phylum followed by Proteobacteria (29.54%) and Bacteroidetes (5.44%). Bacillus thermoamylovorans was significantly abundant in 3ds and 4ds (p<0.05); Ignatzschineria larvae was significantly abundant in 5ds (p<0.05), whereas, Bacillus subtilis was significantly abundant in Sds (p <0.05). A total of 172 species of Bacillus was detected. In minor abundance, the existence of bacteriophages, archaea, and eukaryotes were also detected. Alpha diversity analysis showed the highest Simpson's diversity index in Sds comparable to other samples. Similarly, a non-parametric Shannon's diversity index was also highest in Sds. Good's coverage of 0.99 was observed in all samples. Beta diversity analysis using PCoA showed no significant clustering. Several species were shared between samples and many species were unique to each sample. In KEGG database, a total number of 33 super-pathways and 173 metabolic sub-pathways were annotated from the metagenomic Open Reading Frames. Predictive functional features of pe poke metagenome revealed the genes for the synthesis and metabolism of wide range of bioactive compounds including various essential amino acids, different vitamins, and enzymes. Spearman's correlation was inferred between the abundant species and functional features.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Pynhunlang Kharnaior
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Priyambada Pariyar
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Sikkim University, Tadong, Sikkim, India
| | - Ni Lar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Khin Si Win
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Ae Mar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Nyo Nyo
- Department of Geography, University of Mandalay, Mandalay, Myanmar
| |
Collapse
|
4
|
Kanaan J, Murray J, Higgins R, Nana M, DeMarco AM, Korza G, Setlow P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J Appl Microbiol 2021; 132:2157-2166. [PMID: 34724311 DOI: 10.1111/jam.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.
Collapse
Affiliation(s)
- Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jillian Murray
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ryan Higgins
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Mishil Nana
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Angela M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Ryu S, Park WS, Yun B, Shin M, Go GW, Kim JN, Oh S, Kim Y. Diversity and characteristics of raw milk microbiota from Korean dairy farms using metagenomic and culturomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Luo Y, Korza G, DeMarco AM, Kuipers OP, Li YQ, Setlow P. Properties of spores of Bacillus subtilis with or without a transposon that decreases spore germination and increases spore wet heat resistance. J Appl Microbiol 2021; 131:2918-2928. [PMID: 34042237 DOI: 10.1111/jam.15163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023]
Abstract
AIMS This work aimed to determine how genes on transposon Tn1546 slow Bacillus subtilis spore germination and increase wet heat resistance, and to clarify the transposon's 3 gene spoVA operon's role in spore properties, since the seven wild-type SpoVA proteins form a channel transporting Ca2+ -dipicolinic acid (DPA) in spore formation and germination. METHODS AND RESULTS Deletion of the wild-type spoVA operon from a strain with Tn1546 gave spores with slightly reduced wet heat resistance but some large decreases in germination rate. Spore water content and CaDPA analyses found no significant differences in contents of either component in spores with different Tn1546 components or lacking the wild-type spoVA operon. CONCLUSIONS This work indicates that the SpoVA channel encoded by Tn1546 functions like the wild-type SpoVA channel in CaDPA uptake into developing spores, but not as well in germination. The essentially identical CaDPA and water contents of spores with and without Tn1546 indicate that low core water content does not cause elevated wet heat resistance of spores with Tn1546. SIGNIFICANCE AND IMPACT OF THE STUDY Since wet heat resistance of spores of Bacillus species poses problems in the food industry, understanding mechanisms of spores' wet heat resistance is of significant applied interest.
Collapse
Affiliation(s)
- Y Luo
- Department of Physics, East Carolina University, Greenville, NC, USA.,Laboratory for Biomedical Photonics & Engineering, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - G Korza
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - A M DeMarco
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - O P Kuipers
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Y-Q Li
- Department of Physics, East Carolina University, Greenville, NC, USA.,School of Electronic Engineering, Dongguan University of Technology, Dongguan, Guangdong, P.R. China
| | - P Setlow
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wang X, Li D, Gao P, Gu W, He X, Yang W, Tang W. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110655. [PMID: 32361136 DOI: 10.1016/j.ecoenv.2020.110655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Microbial treatment of heavy metal-polluted sites is considered an environmentally friendly bioremediation technology with high potential. This study shows that Pseudomonas chengduensis strain MBR, a bacterium that can potentially be applied in the treatment of heavy metal pollution, is most affected by Cd(II) stress at the beginning of its growth. Up to 100% of total Cd(II) adsorption occurs in the first 48 h after treatment of stationary phase cells with Cd(II). A biofilm forms on the cell surface, Cd(II) adsorbs, and is reduced to Cd (0) in the form of nanoscale particles. The genome of strain MBR was sequenced, annotated and analyzed. We identified various genes potentially related to cadmium resistance, transport and metabolism. Analysis of the strain MBR genome is helpful to explore the mechanism of Cd(II) resistance, and can provide new ideas for cadmium pollution control.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Wenyi Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzhong Tang
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| |
Collapse
|
8
|
Eijlander RT, van Hekezen R, Bienvenue A, Girard V, Hoornstra E, Johnson NB, Meyer R, Wagendorp A, Walker DC, Wells‐Bennik MHJ. Spores in dairy – new insights in detection, enumeration and risk assessment. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Erik Hoornstra
- Laboratory & Quality Services FrieslandCampina Leeuwarden The Netherlands
| | | | - Rolf Meyer
- Nestec Ltd. Nestlé Research & Development Konolfingen 3510 Switzerland
| | | | | | | |
Collapse
|
9
|
Chattopadhyay S, Smyth EM, Kulkarni P, Babik KR, Reid M, Hittle LE, Clark PI, Mongodin EF, Sapkota AR. Little cigars and cigarillos harbor diverse bacterial communities that differ between the tobacco and the wrapper. PLoS One 2019; 14:e0211705. [PMID: 30794551 PMCID: PMC6386278 DOI: 10.1371/journal.pone.0211705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Despite their potential importance with regard to infectious and chronic diseases among tobacco users, microbial constituents of tobacco products lack characterization. Specifically, to our knowledge, there are no data describing the bacterial diversity of little cigars or cigarillos. To address this knowledge gap, we tested four brands of little cigars and cigarillos. Tobacco and wrapper subsamples (n = 132) were separately subjected to DNA extraction, followed by PCR amplification of the V3V4 hypervariable region of the 16S rRNA gene, and sequencing using Illumina HiSeq. Sequences were analyzed using QIIME and Phyloseq implemented in R. We identified 2,681 operational taxonomic units across all products. Significant differences in alpha and beta diversity were observed between Swisher Sweets and Cheyenne products. Alpha and beta diversity was also significantly different between tobacco and wrapper subsamples within the same product. Beta diversity analyses of only tobacco samples identified no significant differences in the bacterial microbiota of different lots of the same products; however, the microbiota in the wrapper differed significantly across lots for all brands. Overall, Firmicutes were found to dominate in the wrapper, whereas Proteobacteria were most abundant in the tobacco. At the genus level, Bacillus and Lactobacillus dominated in the wrappers, and Staphylococcus and Pseudomonas dominated in the tobacco. Our findings suggest that the bacterial microbiota of little cigars and cigarillos is diverse and differs significantly between the tobacco and the wrapper, and across brands. Future work is necessary to evaluate the potential public health implications of these findings.
Collapse
Affiliation(s)
- Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
| | - Eoghan M. Smyth
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
| | - Kelsey R. Babik
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
| | - Molly Reid
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
| | - Lauren E. Hittle
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Pamela I. Clark
- Department of Behavioral and Community Health, University of Maryland, School of Public Health, College Park, Maryland, United States of America
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
| |
Collapse
|
10
|
Cai L, Zheng SW, Shen YJ, Zheng GD, Liu HT, Wu ZY. Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material. BIORESOURCE TECHNOLOGY 2018; 260:141-149. [PMID: 29625286 DOI: 10.1016/j.biortech.2018.03.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying.
Collapse
Affiliation(s)
- Lu Cai
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China.
| | - Sheng-Wei Zheng
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China; Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Yu-Jun Shen
- Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Guo-Di Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ying Wu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
11
|
Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis. Appl Environ Microbiol 2017; 83:AEM.03122-16. [PMID: 28130296 DOI: 10.1128/aem.03122-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/21/2017] [Indexed: 01/19/2023] Open
Abstract
Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA2mob operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA2mob required higher HA temperatures for efficient germination than spores lacking spoVA2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers.IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis, including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores.
Collapse
|
12
|
Flint S, Gonzaga ZJ, Good J, Palmer J. Bacillus thermoamylovorans – A new threat to the dairy industry – A review. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, Yuan L, Pei Z, He G. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol 2016; 238:193-201. [DOI: 10.1016/j.ijfoodmicro.2016.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/26/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022]
|
14
|
Sohier D, Riou A, Postollec F. A typical day working in a laboratory in 2050: are microbiologists becoming chemists and serene workers? Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Prospects for improved control of dairy-relevant sporeformers using -omics technologies. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MHJ, Kuipers OP, Eijlander RT. A transposon present in specific strains ofBacillus subtilisnegatively affects nutrient- and dodecylamine-induced spore germination. Environ Microbiol 2016; 18:4830-4846. [DOI: 10.1111/1462-2920.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Antonina O. Krawczyk
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Erwin M. Berendsen
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Anne de Jong
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Jos Boekhorst
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Marjon H. J. Wells-Bennik
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Oscar P. Kuipers
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Robyn T. Eijlander
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| |
Collapse
|
17
|
Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MHJ. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME JOURNAL 2016; 10:2633-2642. [PMID: 27105070 DOI: 10.1038/ismej.2016.59] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 01/05/2023]
Abstract
Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn1546-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA2mob, confers high-level heat resistance to spores. Deletion of spoVA2mob in a B. subtilis strain carrying Tn1546 renders heat-sensitive spores while transfer of spoVA2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis, B. licheniformis and B. amyloliquefaciens. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.
Collapse
Affiliation(s)
- Erwin M Berendsen
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,University of Groningen, Laboratory of Molecular Genetics, Groningen, The Netherlands.,NIZO Food Research B.V., Ede, The Netherlands
| | - Jos Boekhorst
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,NIZO Food Research B.V., Ede, The Netherlands
| | - Oscar P Kuipers
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,University of Groningen, Laboratory of Molecular Genetics, Groningen, The Netherlands
| | - Marjon H J Wells-Bennik
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,NIZO Food Research B.V., Ede, The Netherlands
| |
Collapse
|
18
|
Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu Rev Food Sci Technol 2016; 7:457-82. [DOI: 10.1146/annurev-food-041715-033144] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjon H.J. Wells-Bennik
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Robyn T. Eijlander
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Heidy M.W. den Besten
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Erwin M. Berendsen
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alicja K. Warda
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Antonina O. Krawczyk
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel H. Zwietering
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|