1
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
2
|
Variation in the Genetic Repertoire of Viruses Infecting Micromonas pusilla Reflects Horizontal Gene Transfer and Links to Their Environmental Distribution. Viruses 2017; 9:v9050116. [PMID: 28534829 PMCID: PMC5454428 DOI: 10.3390/v9050116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae. This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla, other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla, viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla, but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes.
Collapse
|
3
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
4
|
Mirza S, Staniewski M, Short C, Long A, Chaban Y, Short S. Isolation and characterization of a virus infecting the freshwater algae Chrysochromulina parva. Virology 2015; 486:105-15. [DOI: 10.1016/j.virol.2015.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 11/26/2022]
|
5
|
Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol 2015; 80:4470-80. [PMID: 24837394 DOI: 10.1128/aem.00878-14] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses (including bacteriophages) are the most abundant biological entities on the planet. As such, they are thought to have a major impact on all aspects of microbial community structure and function. Despite this critical role in ecosystem processes, the study of virus/phage diversity has lagged far behind parallel studies of the bacterial and eukaryotic kingdoms, largely due to the absence of any universal phylogenetic marker. Here we review the development and use of signature genes to investigate viral diversity, as a viable strategy for data sets of specific virus groups. Genes that have been used include those encoding structural proteins, such as portal protein, major capsid protein, and tail sheath protein, auxiliary metabolism genes, such as psbA, psbB,and phoH, and several polymerase genes. These marker genes have been used in combination with PCR-based fingerprinting and/or sequencing strategies to investigate spatial, temporal, and seasonal variations and diversity in a wide range of habitats.
Collapse
|
6
|
Bellas CM, Anesio AM, Barker G. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front Microbiol 2015; 6:656. [PMID: 26191051 PMCID: PMC4490671 DOI: 10.3389/fmicb.2015.00656] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts.
Collapse
Affiliation(s)
- Christopher M Bellas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | - Gary Barker
- Cereal Genomics, School of Biological Sciences, University of Bristol Bristol, UK
| |
Collapse
|
7
|
Abstract
ABSTRACT In the past decade knowledge about Megaviruses, also denoted as nucleocytoplasmic large DNA viruses (NCLDVs) has been growing quickly. In the current paper, we present a general description of NCLDVs including their genome size, gene functions and homologies to other forms of life and viruses. Evolution of giant viruses from the fourth domain of life (now extinct) and a genomic complexification from smaller DNA viruses are described. Undeniable is the fact that Megaviruses in terms of their size and genomic capacity belong in between cellular and viral worlds breaking several ‘viral dogmas.’ The host range of NCLDVs goes far beyond unicellular organisms and a major challenge in the future is to establish their pathogenicity in human population.
Collapse
|
8
|
Labonté JM, Hallam SJ, Suttle CA. Previously unknown evolutionary groups dominate the ssDNA gokushoviruses in oxic and anoxic waters of a coastal marine environment. Front Microbiol 2015; 6:315. [PMID: 25954254 PMCID: PMC4406084 DOI: 10.3389/fmicb.2015.00315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/29/2015] [Indexed: 11/23/2022] Open
Abstract
Metagenomic studies have revealed that ssDNA phages from the family Microviridae subfamily Gokushovirinae are widespread in aquatic ecosystems. It is hypothesized that gokushoviruses occupy specialized niches, resulting in differences among genotypes traversing water column gradients. Here, we use degenerate primers that amplify a fragment of the gene encoding the major capsid protein to examine the diversity of gokushoviruses in Saanich Inlet (SI), a seasonally anoxic fjord on the coast of Vancouver Island, BC, Canada. Amplicon sequencing of samples from the mixed oxic surface (10 m) and deeper anoxic (200 m) layers indicated a diverse assemblage of gokushoviruses, with greater richness at 10 m than 200 m. A comparison of amplicon sequences with sequences selected on the basis of RFLP patterns from eight surface samples collected over a 1-year period revealed that gokushovirus diversity was higher in spring and summer during stratification and lower in fall and winter after deep-water renewal, consistent with seasonal variability within gokushovirus populations. Our results provide persuasive evidence that, while specific gokushovirus genotypes may have a narrow host range, hosts for gokushoviruses in SI consist of a wide range of bacterial taxa. Indeed, phylogenetic analysis of clustered amplicons revealed at least five new phylogenetic groups of previously unknown sequences, with the most abundant group associated with viruses infecting SUP05, a ubiquitous and abundant member of marine oxygen minimum zones. Relatives of SUP05 dominate the anoxic SI waters where they drive coupled carbon, nitrogen, and sulfur transformations along the redoxline; thus, gokushoviruses are likely important mortality agents of these bacteria with concomittant influences on biogeochemical cycling in marine oxygen minimum zones.
Collapse
Affiliation(s)
- Jessica M Labonté
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada ; Canadian Institute for Advanced Research, Toronto, ON Canada ; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada ; Canadian Institute for Advanced Research, Toronto, ON Canada ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC Canada ; Department of Botany, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
9
|
Gustavsen JA, Winget DM, Tian X, Suttle CA. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front Microbiol 2014; 5:703. [PMID: 25566218 PMCID: PMC4266044 DOI: 10.3389/fmicb.2014.00703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.
Collapse
Affiliation(s)
- Julia A Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Xi Tian
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Departments of Botany, and Microbiology & Immunology, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
10
|
Seasonal variations in PCR-DGGE fingerprinted viruses infecting phytoplankton in large and deep peri-alpine lakes. Ecol Res 2014. [DOI: 10.1007/s11284-013-1121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhong X, Jacquet S. Contrasting diversity of phycodnavirus signature genes in two large and deep western European lakes. Environ Microbiol 2013; 16:759-73. [DOI: 10.1111/1462-2920.12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 06/22/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Xu Zhong
- INRA; UMR CARRTEL; 75 Avenue de Corzent 74203 Thonon-les-Bains cx France
| | - Stéphan Jacquet
- INRA; UMR CARRTEL; 75 Avenue de Corzent 74203 Thonon-les-Bains cx France
| |
Collapse
|
12
|
Temporal dynamics and decay of putatively allochthonous and autochthonous viral genotypes in contrasting freshwater lakes. Appl Environ Microbiol 2012; 78:6583-91. [PMID: 22773646 DOI: 10.1128/aem.01705-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h(-1)) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during hydrological events and then decay once there.
Collapse
|
13
|
Manrique JM, Calvo AY, Jones LR. Phylogenetic analysis of Ostreococcus virus sequences from the Patagonian Coast. Virus Genes 2012; 45:316-26. [PMID: 22674355 DOI: 10.1007/s11262-012-0762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Julieta M Manrique
- Division of Molecular Biology, Estación de Fotobiología Playa Unión, CC 15 (9103), Playa Unión, Rawson, Chubut, Argentina
| | | | | |
Collapse
|
14
|
Abstract
Because viruses of eukaryotic algae are incredibly diverse, sweeping generalizations about their ecology are rare. These obligate parasites infect a range of algae and their diversity can be illustrated by considering that isolates range from small particles with ssRNA genomes to much larger particles with 560 kb dsDNA genomes. Molecular research has also provided clues about the extent of their diversity especially considering that genetic signatures of algal viruses in the environment rarely match cultivated viruses. One general concept in algal virus ecology that has emerged is that algal viruses are very host specific and most infect only certain strains of their hosts; with the exception of viruses of brown algae, evidence for interspecies infectivity is lacking. Although some host-virus systems behave with boom-bust oscillations, complex patterns of intraspecies infectivity can lead to host-virus coexistence obfuscating the role of viruses in host population dynamics. Within the framework of population dynamics, host density dependence is an important phenomenon that influences virus abundances in nature. Variable burst sizes of different viruses also influence their abundances and permit speculations about different life strategies, but as exceptions are common in algal virus ecology, life strategy generalizations may not be broadly applicable. Gaps in knowledge of virus seasonality and persistence are beginning to close and investigations of environmental reservoirs and virus resilience may answer questions about virus inter-annual recurrences. Studies of algal mortality have shown that viruses are often important agents of mortality reinforcing notions about their ecological relevance, while observations of the surprising ways viruses interact with their hosts highlight the immaturity of our understanding. Considering that just two decades ago algal viruses were hardly acknowledged, recent progress affords the optimistic perspective that future studies will provide keys to unlocking our understanding of algal virus ecology specifically, and aquatic ecosystems generally.
Collapse
Affiliation(s)
- Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
15
|
Danovaro R, Corinaldesi C, Dell'Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA. Marine viruses and global climate change. FEMS Microbiol Rev 2011; 35:993-1034. [DOI: 10.1111/j.1574-6976.2010.00258.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
The expanding field of plant virus ecology: Historical foundations, knowledge gaps, and research directions. Virus Res 2011; 159:84-94. [DOI: 10.1016/j.virusres.2011.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/31/2011] [Accepted: 05/09/2011] [Indexed: 11/20/2022]
|
17
|
Gimenes MV, Zanotto PMDA, Suttle CA, da Cunha HB, Mehnert DU. Phylodynamics and movement of Phycodnaviruses among aquatic environments. ISME JOURNAL 2011; 6:237-47. [PMID: 21796218 PMCID: PMC3260511 DOI: 10.1038/ismej.2011.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby influencing community structure and succession, nutrient cycles and potentially atmospheric composition because phytoplankton fix about half the carbon dioxide (CO(2)) on the planet, and some algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological importance and widespread distribution, relatively little is known about the evolutionary history, phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth--the Amazon Basin--that were compared with samples from different aquatic systems from several places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the effective population around 400 thousand years before the present (KYBP), followed by a recovery near to the present time. Moreover, we present evidence for significant viral gene flow between freshwater environments, but crucially almost none between freshwater and marine environments.
Collapse
Affiliation(s)
- Manuela V Gimenes
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Short CM, Rusanova O, Short SM. Quantification of virus genes provides evidence for seed-bank populations of phycodnaviruses in Lake Ontario, Canada. ISME JOURNAL 2010; 5:810-21. [PMID: 21124493 DOI: 10.1038/ismej.2010.183] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using quantitative PCR, the abundances of six phytoplankton viruses DNA polymerase (polB) gene fragments were estimated in water samples collected from Lake Ontario, Canada over 26 months. Four of the polB fragments were most related to marine prasinoviruses, while the other two were most closely related to cultivated chloroviruses. Two Prasinovirus-related genes reached peak abundances of >1000 copies ml(-1) and were considered 'high abundance', whereas the other two Prasinovirus-related genes peaked at abundances <1000 copies ml(-1) and were considered 'low abundance'. Of the genes related to chloroviruses, one peaked at ca 1600 copies ml(-1), whereas the other reached only ca 300 copies ml(-1). Despite these differences in peak abundance, the abundances of all genes monitored were lowest during the late fall, winter and early spring; during these months the high abundance genes persisted at 100-1000 copies ml(-1) while the low abundance Prasinovirus- and Chlorovirus-related genes persisted at fewer than ca 100 copies ml(-1). Clone libraries of psbA genes from Lake Ontario revealed numerous Chlorella-like algae and two prasinophytes demonstrating the presence of candidate hosts for all types of viruses monitored. Our results corroborate recent metagenomic analyses that suggest that aquatic virus communities are composed of only a few abundant populations and many low abundance populations. Thus, we speculate that an ecologically important characteristic of phycodnavirus communities is seed-bank populations with members that can become numerically dominant when their host abundances reach appropriate levels.
Collapse
Affiliation(s)
- Cindy M Short
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
19
|
Fitzgerald LA, Wu PK, Gurnon JR, Biffinger JC, Ringeisen BR, Van Etten JL. Isolation of the phycodnavirus PBCV-1 by biological laser printing. J Virol Methods 2010; 167:223-5. [DOI: 10.1016/j.jviromet.2010.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 11/29/2022]
|
20
|
Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol 2009; 17:414-22. [DOI: 10.1016/j.tim.2009.05.010] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/28/2009] [Accepted: 05/13/2009] [Indexed: 12/21/2022]
|