1
|
Orata FD, Hussain NAS, Liang KYH, Hu D, Boucher YF. Genomes of Vibrio metoecus co-isolated with Vibrio cholerae extend our understanding of differences between these closely related species. Gut Pathog 2022; 14:42. [PMID: 36404338 PMCID: PMC9677704 DOI: 10.1186/s13099-022-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vibrio cholerae, the causative agent of cholera, is a well-studied species, whereas Vibrio metoecus is a recently described close relative that is also associated with human infections. The availability of V. metoecus genomes provides further insight into its genetic differences from V. cholerae. Additionally, both species have been co-isolated from a cholera-free brackish coastal pond and have been suggested to interact with each other by horizontal gene transfer (HGT). RESULTS The genomes of 17 strains from each species were sequenced. All strains share a large core genome (2675 gene families) and very few genes are unique to each species (< 3% of the pan-genome of both species). This led to the identification of potential molecular markers-for nitrite reduction, as well as peptidase and rhodanese activities-to further distinguish V. metoecus from V. cholerae. Interspecies HGT events were inferred in 21% of the core genes and 45% of the accessory genes. A directional bias in gene transfer events was found in the core genome, where V. metoecus was a recipient of three times (75%) more genes from V. cholerae than it was a donor (25%). CONCLUSION V. metoecus was misclassified as an atypical variant of V. cholerae due to their resemblance in a majority of biochemical characteristics. More distinguishing phenotypic assays can be developed based on the discovery of potential gene markers to avoid any future misclassifications. Furthermore, differences in relative abundance or seasonality were observed between the species and could contribute to the bias in directionality of HGT.
Collapse
Affiliation(s)
- Fabini D. Orata
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.17089.370000 0001 2190 316XDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta Canada
| | - Nora A. S. Hussain
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
| | - Kevin Y. H. Liang
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.14709.3b0000 0004 1936 8649Department of Quantitative Life Sciences, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Dalong Hu
- grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Yann F. Boucher
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
2
|
Adade NE, Aniweh Y, Mosi L, Valvano MA, Duodu S, Ahator SD. Comparative analysis of Vibrio cholerae isolates from Ghana reveals variations in genome architecture and adaptation of outbreak and environmental strains. Front Microbiol 2022; 13:998182. [PMID: 36312941 PMCID: PMC9608740 DOI: 10.3389/fmicb.2022.998182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Recurrent epidemics of cholera denote robust adaptive mechanisms of Vibrio cholerae for ecological shifting and persistence despite variable stress conditions. Tracking the evolution of pathobiological traits requires comparative genomic studies of isolates from endemic areas. Here, we investigated the genetic differentiation among V. cholerae clinical and environmental isolates by highlighting the genomic divergence associated with gene decay, genome plasticity, and the acquisition of virulence and adaptive traits. The clinical isolates showed high phylogenetic relatedness due to a higher frequency of shared orthologs and fewer gene variants in contrast to the evolutionarily divergent environmental strains. Divergence of the environmental isolates is linked to extensive genomic rearrangements in regions containing mobile genetic elements resulting in numerous breakpoints, relocations, and insertions coupled with the loss of virulence determinants acf, zot, tcp, and ctx in the genomic islands. Also, four isolates possessed the CRISPR-Cas systems with spacers specific for Vibrio phages and plasmids. Genome synteny and homology analysis of the CRISPR-Cas systems suggest horizontal acquisition. The marked differences in the distribution of other phage and plasmid defense systems such as Zorya, DdmABC, DdmDE, and type-I Restriction Modification systems among the isolates indicated a higher propensity for plasmid or phage disseminated traits in the environmental isolates. Our results reveal that V. cholerae strains undergo extensive genomic rearrangements coupled with gene acquisition, reflecting their adaptation during ecological shifts and pathogenicity.
Collapse
Affiliation(s)
- Nana Eghele Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Pal BB, Nayak SR, Nayak AK, Behera DR, Pany S, Pati S. Variants of ctxB alleles of Vibrio cholerae O1 caused sequential cholera outbreaks in the tribal areas of Odisha, India. JOURNAL OF WATER AND HEALTH 2021; 19:1021-1029. [PMID: 34874908 DOI: 10.2166/wh.2021.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholera localized outbreaks/epidemics accounting for high morbidity and mortality have been reported in different years both from the coastal and tribal districts of Odisha. In the present study, the emergence and spread of two sequential cholera outbreaks reported in July to October 2012 from Rayagada and Kalahandi districts of Odisha was investigated. Environmental water samples from different sources and rectal swabs from diarrhoea patients were analysed for identification, antibiogram profiles and molecular studies using DMAMA-PCR assays. The pulsed field gel electrophoresis (PFGE) was done on some selected Vibrio cholerae O1 strains isolated from these cholera outbreak areas. Results showed 42% of rectal swabs and 2.3% of water samples collected from both the districts were positive for Vibrio cholerae O1 Ogawa biotype El Tor carrying both ctxB1 and ctxB7 genotypes. The common resistance profile of V. cholerae O1 strains was ampicillin, nalidixic acid, furazolidone and co-trimoxazole. The PFGE analysis on selected V. cholerae O1 strains of ctxB1 and ctxB7 genotypes showed three pulsotypes with 96% similarity matrix exhibiting the relationship with their respective water sources. Hence, continuous surveillance is highly essential to monitor the antibiogram profile and changing pattern of ctxB genotypes of V. cholerae O1 in this region.
Collapse
Affiliation(s)
- Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| | - Ashish Kumar Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| | - Dipti Ranjan Behera
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| | - Swatishree Pany
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| | - Sanghamitra Pati
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India E-mail:
| |
Collapse
|
4
|
Pal BB, Mohanty A, Biswal B, Nayak SR, Das BK, Lenka PP. Haitian variant Vibrio cholerae O1 Ogawa caused cholera outbreaks in Odisha. Indian J Med Microbiol 2021; 39:513-517. [PMID: 33812724 DOI: 10.1016/j.ijmmb.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Diarrheal disorders particularly cholera cause a significant threat resulting in high morbidity and mortality in the coastal and tribal areas of Odisha. Two sequential diarrheal outbreaks reported in 2016 from Balasore and Rayagada districts of Odisha were investigated to find out the causative organisms, antibiogram profile and molecular analysis of the isolated pathogens. METHOD Bacteriological analysis and antibiogram profiles of the pathogens were carried out as per the standard procedure followed. The double mismatch amplification mutation (DMAMA) PCR for ctxB gene, sequencing and pulse-field gel electrophoresis (PFGE) were carried out on Vibrio cholerae O1 strains. RESULTS The rectal swabs and water samples from these districts were positive for V. cholerae O1 Ogawa biotype El Tor. The V. cholerae O1 strains isolated from Balasore district were multidrug resistant to many antibiotics which differed from the isolates of Rayagada district. The DMAMA PCR assay on all clinical and water isolates from these areas and some strains from other districts exhibited ctxB7 allele of V. cholerae O1 which correlates with the sequencing results having different pulsotypes. The Haitian variant of V. cholerae O1 strains which were compared with the V. cholerae O1 strains of 1999 and 2000 exhibited different pulsotypes. CONCLUSION The present study reports cholera outbreaks due to multidrug resistant ctxB7 allele of V. cholerae O1 from both coastal (Balasore) and tribal (Rayagada) areas of Odisha.
Collapse
Affiliation(s)
- Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Orissa, India.
| | - Anima Mohanty
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Orissa, India.
| | - Bhagyalaxmi Biswal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Orissa, India.
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Orissa, India.
| | - Basanta Kumar Das
- ICAR - Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Prangya Paramita Lenka
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Orissa, India.
| |
Collapse
|
5
|
Hounmanou YMG, Leekitcharoenphon P, Kudirkiene E, Mdegela RH, Hendriksen RS, Olsen JE, Dalsgaard A. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Negl Trop Dis 2019; 13:e0007934. [PMID: 31869327 PMCID: PMC6927581 DOI: 10.1371/journal.pntd.0007934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tanzania is one of seven countries with the highest disease burden caused by cholera in Africa. We studied the evolution of Vibrio cholerae O1 isolated in Tanzania during the past three decades. METHODOLOGY/PRINCIPAL FINDINGS Genome-wide analysis was performed to characterize V. cholerae O1 responsible for the Tanzanian 2015-2017 outbreak along with strains causing outbreaks in the country for the past three decades. The genomes were further analyzed in a global context of 590 strains of the seventh cholera pandemic (7PET), as well as environmental isolates from Lake Victoria. All Tanzanian cholera outbreaks were caused by the 7PET lineage. The T5 sub-lineage (ctxB3) dominated outbreaks until 1997, followed by the T10 atypical El Tor (ctxB1) up to 2015, which were replaced by the T13 atypical El Tor of the current third wave (ctxB7) causing most cholera outbreaks until 2017 with T13 being phylogenetically related to strains from East African countries, Yemen and Lake Victoria. The strains were less drug resistant with approximate 10-kb deletions found in the SXT element, which encodes resistance to sulfamethoxazole and trimethoprim. Nucleotide deletions were observed in the CTX prophage of some strains, which warrants further virulence studies. Outbreak strains share 90% of core genes with V. cholerae O1 from Lake Victoria with as low as three SNPs difference and a significantly similar accessory genome, composed of genomic islands namely the CTX prophage, Vibrio Pathogenicity Islands; toxin co-regulated pilus biosynthesis proteins and the SXT-ICE element. CONCLUSION/SIGNIFICANCE Characterization of V. cholerae O1 from Tanzania reveals genetic diversity of the 7PET lineage composed of T5, T10 and T13 sub-lineages with introductions of new sequence types from neighboring countries. The presence of these sub-lineages in environmental isolates suggests that the African Great Lakes may serve as aquatic reservoirs for survival of V. cholerae O1 favoring continuous human exposure.
Collapse
Affiliation(s)
| | | | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robinson H. Mdegela
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rene S. Hendriksen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore city, Singapore
| |
Collapse
|
6
|
Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM, Chowdhury F, Khan AI, Boncy J, Buteau J, Ivers LC, Ryan ET, Charles RC, Calderwood SB, Qadri F, Harris JB, LaRocque RC, Shapiro BJ. Vibrio cholerae genomic diversity within and between patients. Microb Genom 2019; 3. [PMID: 29306353 PMCID: PMC5761273 DOI: 10.1099/mgen.0.000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed 'waves' of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.
Collapse
Affiliation(s)
- Inès Levade
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yves Terrat
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Baptiste Leducq
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Ana A Weil
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie M Mayo-Smith
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Fahima Chowdhury
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacques Boncy
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Josiane Buteau
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Louise C Ivers
- 3Department of Medicine, Harvard Medical School, Boston, MA, USA.,6Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.,7Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,8Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Richelle C Charles
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,9Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,10Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - B Jesse Shapiro
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Kirschner AKT, Pleininger S, Jakwerth S, Rehak S, Farnleitner AH, Huhulescu S, Indra A. Application of three different methods to determine the prevalence, the abundance and the environmental drivers of culturable Vibrio cholerae in fresh and brackish bathing waters. J Appl Microbiol 2018; 125:1186-1198. [PMID: 29856502 PMCID: PMC6175421 DOI: 10.1111/jam.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023]
Abstract
Aims Three cultivation methods were used to study the prevalence and abundance of Vibrio cholerae in Eastern Austrian bathing waters and to elucidate the main factors controlling their distribution. Methods and Results Vibrio cholerae abundance was monitored at 36 inland bathing sites with membrane filtration (MF), a standard most probable number (MPN) approach and direct plating (DP). Membrane filtration yielded the most reliable and sensitive results and allowed V. cholerae detection at 22 sites with concentrations up to 39 000 CFU per 100 ml, all belonging to serogroups other than O1 and O139 and not coding for cholera toxin and toxin coregulated pilus. Direct plating turned out as an easy method for environments with high V. cholerae abundances, conductivity was the only significant predictor of V. cholerae abundance in the bathing waters at warm water temperatures. Conclusions Vibrio cholerae nonO1/nonO139 are widely prevalent in Eastern Austrian bathing waters. Instead of the standard MPN approach, MF and DP are recommended for V. cholerae monitoring. Conductivity can be used as a first easy‐to‐measure parameter to identify potential bathing waters at risk. Significance and Impact of the Study Vibrio cholerae nonO1/nonO139 infections associated with bathing activities are an increasing public health issue in many countries of the northern hemisphere. However, there are only limited data available on the prevalence and abundance of V. cholerae in coastal and inland bathing waters. For monitoring V. cholerae prevalence and abundance, reliable and simple quantification methods are needed. Moreover, prediction of V. cholerae abundance from environmental parameters would be a helpful tool for risk assessment. This study identified the best culture‐based quantification methods and a first quick surrogate parameter to attain these aims.
Collapse
Affiliation(s)
- A K T Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University Vienna, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.,Research Department Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - S Pleininger
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - S Jakwerth
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University Vienna, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - S Rehak
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - A H Farnleitner
- Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.,Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Vienna, Austria.,Research Department Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - S Huhulescu
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - A Indra
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
8
|
Retrospective genomic analysis of Vibrio cholerae O1 El Tor strains from different places in India reveals the presence of ctxB-7 allele found in Haitian isolates. Epidemiol Infect 2017; 145:2212-2220. [PMID: 28712383 DOI: 10.1017/s0950268817001182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A total of 45 strains of Vibrio cholerae O1 isolated from 10 different places in India where they were associated with cases of cholera between the years 2007 and 2008 were examined by molecular methods. With the help of phenotypic and genotypic tests the strains were confirmed to be O1 El Tor biotype strains with classical ctxB gene. Polymerase chain reaction (PCR) analysis by double - mismatch amplification mutation assay PCR showed 16 of these strains carried the ctxB-7 allele reported in Haitian strains. Sequencing of the ctxB gene in all the 45 strains revealed that in 16 strains the histidine at the 20th amino acid position had been replaced by asparagine and this single nucleotide polymorphism did not affect cholera toxin production as revealed by beads enzyme-linked immunosorbent assay. This study shows that the new ctxB gene sequence was circulating in different places in India. Seven representatives of these 45 strains analysed by pulsed - field gel electrophoresis showed four distinct Not I digested profiles showing that multiple clones were causing cholera in 2007 and 2008.
Collapse
|
9
|
Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133. [PMID: 28327641 PMCID: PMC5361080 DOI: 10.1038/srep45133] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.
Collapse
|
10
|
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenström I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AKT. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 2017; 19:328-344. [PMID: 27871138 PMCID: PMC5718291 DOI: 10.1111/1462-2920.13612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties.
Collapse
Affiliation(s)
- Carina Pretzer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Irina S Druzhinina
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Carmen Amaro
- ERI BioTecMed University of Valencia, Valencia, Spain
| | - Eva Benediktsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | | | - Franciska M Schets
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas H Farnleitner
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| |
Collapse
|
11
|
Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol 2016; 2:16240. [DOI: 10.1038/nmicrobiol.2016.240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022]
|
12
|
A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population. Appl Environ Microbiol 2016; 82:5576-86. [PMID: 27371587 DOI: 10.1128/aem.01177-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae is a ubiquitous aquatic microbe in temperate and tropical coastal areas. It is a diverse species, with many isolates that are harmless to humans, while others are highly pathogenic. Most notable among them are strains belonging to the pandemic O1/O139 serogroup lineage, which contains the causative agents of cholera. The environmental selective regimes that led to this diversity are key to understanding how pathogens evolve in environmental reservoirs. A local population of V. cholerae and its close relative Vibrio metoecus from a coastal pond and lagoon system was extensively sampled during two consecutive months across four size fractions (480 isolates). In stark contrast to previous studies, the observed population was highly clonal, with 60% of V. cholerae isolates falling into one of five clonal complexes, which varied in abundance in the short temporal scale sampled. V. cholerae clonal complexes had significantly different distributions across size fractions and the two environments sampled, the pond and the lagoon. Sequencing the genomes of 20 isolates representing these five V. cholerae clonal complexes revealed different evolutionary trajectories, with considerable variations in gene content with potential ecological significance. Showing genotypic differentiation and differential spatial distribution, the dominant clonal complexes are likely ecologically divergent. Temporal variation in the relative abundance of these complexes suggests that transient blooms of specific clones could dominate local diversity. IMPORTANCE Vibrio cholerae is commonly found in coastal areas worldwide, with only a single group of this bacterium capable of causing severe cholera outbreaks. However, the potential to evolve the ability to cause disease exists in many strains of this species in its aquatic reservoir. Understanding how pathogenic bacteria evolve requires the study of their natural environments. By extensive sampling in a geographically restricted location in the United States, we found that most cells of a V. cholerae population belong to only a small number of strains. Analysis of their genome composition and spatial distribution indicates differential environmental adaptations between these strains. Other strains exist in smaller numbers, and the population was found to be temporally varied. This suggests frequent bloom and collapse cycles on a time scale of weeks. These population dynamics make it possible that more virulent strains could stochastically rise to large numbers, allowing for infection to occur.
Collapse
|
13
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
14
|
Esteves K, Mosser T, Aujoulat F, Hervio-Heath D, Monfort P, Jumas-Bilak E. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons. Front Microbiol 2015; 6:708. [PMID: 26236294 PMCID: PMC4503927 DOI: 10.3389/fmicb.2015.00708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/28/2015] [Indexed: 01/09/2023] Open
Abstract
Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.
Collapse
Affiliation(s)
- Kévin Esteves
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Thomas Mosser
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Fabien Aujoulat
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | | | - Patrick Monfort
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Estelle Jumas-Bilak
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire Montpellier, France
| |
Collapse
|
15
|
Woegerbauer M, Kuffner M, Domingues S, Nielsen KM. Involvement of aph(3')-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front Microbiol 2015; 6:442. [PMID: 26042098 PMCID: PMC4437187 DOI: 10.3389/fmicb.2015.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3')-IIa (nptII) gene. APH(3')-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99-100% sequence identity with aph(3')-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3')-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3')-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Integrative Risk Assessment - Data - Statistics, GMO Risk Assessment, Austrian Agency for Health and Food Safety Vienna, Austria
| | - Melanie Kuffner
- Integrative Risk Assessment - Data - Statistics, GMO Risk Assessment, Austrian Agency for Health and Food Safety Vienna, Austria
| | - Sara Domingues
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Kaare M Nielsen
- Department of Pharmacy, University of Tromsø Tromsø, Norway ; Genøk-Center for Biosafety Tromsø Tromsø, Norway
| |
Collapse
|
16
|
Rapa RA, Islam A, Monahan LG, Mutreja A, Thomson N, Charles IG, Stokes HW, Labbate M. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage. Environ Microbiol 2014; 17:1090-102. [PMID: 24889424 PMCID: PMC4405046 DOI: 10.1111/1462-2920.12512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology, PO Box 123 Broadway, Sydney, NSW, 2007, Australia; Department of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nunney L, Hopkins DL, Morano LD, Russell SE, Stouthamer R. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion. Appl Environ Microbiol 2014; 80:1159-69. [PMID: 24296499 PMCID: PMC3911225 DOI: 10.1128/aem.02920-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/25/2013] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.
Collapse
Affiliation(s)
- Leonard Nunney
- Biology Department, University of California, Riverside, California, USA
| | - Donald L. Hopkins
- University of Florida, Mid-Florida Research and Education Center, Apopka, Florida, USA
| | - Lisa D. Morano
- Department of Natural Sciences, University of Houston—Downtown, Houston, Texas, USA
| | | | - Richard Stouthamer
- Entomology Department, University of California, Riverside, California, USA
| |
Collapse
|
18
|
Zhou H, Zhao X, Wu R, Cui Z, Diao B, Li J, Wang D, Kan B, Liang W. Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. INFECTION GENETICS AND EVOLUTION 2014; 22:72-80. [PMID: 24448269 DOI: 10.1016/j.meegid.2013.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
Abstract
Serogroup O1 Vibrio cholerae is the most common agents to cause epidemic and pandemic cholera disease. In this study, multilocus sequence typing (MLST) was performed on 160 serogroup O1 strains (including 42 toxigenic and 118 non-toxigenic), and the virulence/fitness gene profiles of 16 loci were further analysed for 60 strains of these. Eighty-four sequence types (STs) with 14 clonal complexes were distinguished, and 29 STs were unique. Except SD19771005, all toxigenic strains were well-separated from the non-toxigenic strains. While a group of non-toxigenic strains clustered closer to the toxigenic strains compared to the other strains. Overall the examined gene loci showed higher presence rates in the toxigenic strains compared to the non-toxigenic strains. It is worth noting that the presence rates of VPI, TLC, VSP-I and VSP-II in the non-toxigenic strains that were clustered closer to the toxigenic strains were much higher compared to the other non-toxigenic strains. Our study indicated the complex population structure of O1 strains, and parts of non-toxigenic strains are genetically more closely related to toxigenic strains than other non-toxigenic strains, suggesting that these strains may have a higher potential for infection with CTXФ in the environment or host intestine and is more efficient to become new pathogenic or epidemic clones.
Collapse
Affiliation(s)
- Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, 866 Yuhangtang Road, Hangzhou 310003, People's Republic of China
| | - Xuan Zhao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China
| | - Rui Wu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China
| | - Zhigang Cui
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, 866 Yuhangtang Road, Hangzhou 310003, People's Republic of China
| | - Baowei Diao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China
| | - Jie Li
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, 866 Yuhangtang Road, Hangzhou 310003, People's Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, 866 Yuhangtang Road, Hangzhou 310003, People's Republic of China.
| | - Weili Liang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206, People's Republic of China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, 866 Yuhangtang Road, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
19
|
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, Ahsan S, Reeves PR, Nair GB, Lan R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 2013; 8:e65342. [PMID: 23776471 PMCID: PMC3679125 DOI: 10.1371/journal.pone.0065342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/24/2013] [Indexed: 01/09/2023] Open
Abstract
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna Salim
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacob Kurniawan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Connie Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Queenie Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunjukta Ahsan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Lefeuvre P, Cellier G, Remenant B, Chiroleu F, Prior P. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species. PLoS One 2013; 8:e63155. [PMID: 23723974 PMCID: PMC3665557 DOI: 10.1371/journal.pone.0063155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/28/2013] [Indexed: 01/11/2023] Open
Abstract
Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.
Collapse
Affiliation(s)
- Pierre Lefeuvre
- CIRAD UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France.
| | | | | | | | | |
Collapse
|
21
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
22
|
Salmonella enterica diversity in central Californian coastal waterways. Appl Environ Microbiol 2013; 79:4199-209. [PMID: 23624479 DOI: 10.1128/aem.00930-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is one of the most important bacterial enteric pathogens worldwide. However, little is known about its distribution and diversity in the environment. The present study explored the diversity of 104 strains of Salmonella enterica isolated over 2 years from 12 coastal waterways in central California. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing were used to probe species diversity. Seventy-four PFGE patterns and 38 sequence types (STs) were found, including 18 newly described STs. Nineteen of 25 PFGE patterns were indistinguishable from those of clinical isolates in PulseNet. The most common ST was consistent with S. enterica serovar Typhimurium, and other frequently detected STs were associated with the serovars Heidelberg and Enteritidis; all of these serovars are important etiologies of salmonellosis. An investigation into S. enterica biogeography was conducted at the level of ST and subspecies. At the ST and subspecies level, we found a taxon-time relationship but no taxon-area or taxon-environmental distance relationships. STs collected during wet versus dry conditions tended to be more similar; however, STs collected from waterways adjacent to watersheds with similar land covers did not tend to be similar. The results suggest that the lack of dispersal limitation may be an important factor affecting the diversity of S. enterica in the region.
Collapse
|
23
|
Theethakaew C, Feil EJ, Castillo-Ramírez S, Aanensen DM, Suthienkul O, Neil DM, Davies RL. Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis. Appl Environ Microbiol 2013; 79:2358-70. [PMID: 23377932 PMCID: PMC3623249 DOI: 10.1128/aem.03067-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a seafood-borne pathogenic bacterium that is a major cause of gastroenteritis worldwide. We investigated the genetic and evolutionary relationships of 101 V. parahaemolyticus isolates originating from clinical, human carrier, and various environmental and seafood production sources in Thailand using multilocus sequence analysis. The isolates were recovered from clinical samples (n = 15), healthy human carriers (n = 18), various types of fresh seafood (n = 18), frozen shrimp (n = 16), fresh-farmed shrimp tissue (n = 18), and shrimp farm water (n = 16). Phylogenetic analysis revealed a high degree of genetic diversity within the V. parahaemolyticus population, although isolates recovered from clinical samples and from farmed shrimp and water samples represented distinct clusters. The tight clustering of the clinical isolates suggests that disease-causing isolates are not a random sample of the environmental reservoir, although the source of infection remains unclear. Extensive serotypic diversity occurred among isolates representing the same sequence types and recovered from the same source at the same time. These findings suggest that the O- and K-antigen-encoding loci are subject to exceptionally high rates of recombination. There was also strong evidence of interspecies horizontal gene transfer and intragenic recombination involving the recA locus in a large proportion of isolates. As the majority of the intragenic recombinational exchanges involving recA occurred among clinical and carrier isolates, it is possible that the human intestinal tract serves as a potential reservoir of donor and recipient strains that is promoting horizontal DNA transfer, driving evolutionary change, and leading to the emergence of new, potentially pathogenic strains.
Collapse
Affiliation(s)
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Douglas M. Neil
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
24
|
Chewapreecha C. Natural transformers. Nat Rev Microbiol 2012; 10:598. [DOI: 10.1038/nrmicro2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
|
26
|
Sakamoto M, Ohkuma M. Identification and classification of the genus Bacteroides by multilocus sequence analysis. MICROBIOLOGY-SGM 2011; 157:3388-3397. [PMID: 21948050 DOI: 10.1099/mic.0.052332-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multilocus sequence analysis (MLSA) was performed on representative species of the genus Bacteroides. Internal fragments of the genes selected, dnaJ, gyrB, hsp60, recA, rpoB and 16S rRNA, were amplified by direct PCR and then sequenced from 38 Bacteroides strains representing 35 species. Neighbour-joining (NJ), maximum-likelihood (ML) and maximum-parsimony (MP) phylogenies of the individual genes were compared. The data confirm that the potential for discrimination of Bacteroides species is greater using MLSA of housekeeping genes than 16S rRNA genes. Among the housekeeping genes analysed, gyrB was the most informative, followed by dnaJ. Analyses of concatenated sequences (4816 bp) of all six genes revealed robust phylogenetic relationships among different Bacteroides species when compared with the single-gene trees. The NJ, ML and MP trees were very similar, and almost fully resolved relationships of Bacteroides species were obtained, to our knowledge for the first time. In addition, analysis of a concatenation (2457 bp) of the dnaJ, gyrB and hsp60 genes produced essentially the same result. Ten distinct clades were recognized using the SplitsTree4 program. For the genus Bacteroides, we can define species as a group of strains that share at least 97.5% gene sequence similarity based on the fragments of five protein-coding housekeeping genes and the 16S rRNA gene. This study demonstrates that MLSA of housekeeping genes is a valuable alternative technique for the identification and classification of species of the genus Bacteroides.
Collapse
Affiliation(s)
- Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Ecology and genetic structure of a northern temperate Vibrio cholerae population related to toxigenic isolates. Appl Environ Microbiol 2011; 77:7568-75. [PMID: 21926213 DOI: 10.1128/aem.00378-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although Vibrio cholerae is an important human pathogen, little is known about its populations in regions where the organism is endemic but where cholera disease is rare. A total of 31 independent isolates confirmed as V. cholerae were collected from water, sediment, and oysters in 2008 and 2009 from the Great Bay Estuary (GBE) in New Hampshire, a location where the organism has never been detected. Environmental analyses suggested that abundance correlates most strongly with rainfall events, as determined from data averaged over several days prior to collection. Phenotyping, genotyping, and multilocus sequence analysis (MLSA) revealed a highly diverse endemic population, with clones recurring in both years. Certain isolates were closely related to toxigenic O1 strains, yet no virulence genes were detected. Multiple statistical tests revealed evidence of recombination among strains that contributed to allelic diversity equally as mutation. This relatively isolated population discovered on the northern limit of detection for V. cholerae can serve as a model of natural population dynamics that augments predictive models for disease emergence.
Collapse
|
28
|
Bienfang PK, Defelice SV, Laws EA, Brand LE, Bidigare RR, Christensen S, Trapido-Rosenthal H, Hemscheidt TK, McGillicuddy DJ, Anderson DM, Solo-Gabriele HM, Boehm AB, Backer LC. Prominent human health impacts from several marine microbes: history, ecology, and public health implications. Int J Microbiol 2010; 2011:152815. [PMID: 20976073 PMCID: PMC2957129 DOI: 10.1155/2011/152815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 12/04/2022] Open
Abstract
This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment.
Collapse
Affiliation(s)
- P K Bienfang
- Center for Oceans and Human Health, Pacific Research Center for Marine Biomedicine, School of Ocean and Earth Science and Technology, MSB no. 205, University of Hawaii, Honolulu, HI, 96822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|