1
|
Gaither KA, Garcia WL, Tyrrell KJ, Wright AT, Smith JN. Activity-Based Protein Profiling to Probe Relationships between Cytochrome P450 Enzymes and Early-Age Metabolism of Two Polycyclic Aromatic Hydrocarbons (PAHs): Phenanthrene and Retene. Chem Res Toxicol 2024; 37:711-722. [PMID: 38602333 DOI: 10.1021/acs.chemrestox.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A growing body of literature has linked early-life exposures to polycyclic aromatic hydrocarbons (PAH) with adverse neurodevelopmental effects. Once in the body, metabolism serves as a powerful mediator of PAH toxicity by bioactivating and detoxifying PAH metabolites. Since enzyme expression and activity vary considerably throughout human development, we evaluated infant metabolism of PAHs as a potential contributing factor to PAH susceptibility. We measured and compared rates of phenanthrene and retene (two primary PAH constituents of woodsmoke) metabolism in human hepatic microsomes from individuals ≤21 months of age to a pooled sample (n = 200) consisting primarily of adults. We used activity-based protein profiling (ABPP) to characterize cytochrome P450 enzymes (CYPs) in the same hepatic microsome samples. Once incubated in microsomes, phenanthrene demonstrated rapid depletion. Best-fit models for phenanthrene metabolism demonstrated either 1 or 2 phases, depending on the sample, indicating that multiple enzymes could metabolize phenanthrene. We observed no statistically significant differences in phenanthrene metabolism as a function of age, although samples from the youngest individuals had the slowest phenanthrene metabolism rates. We observed slower rates of retene metabolism compared with phenanthrene also in multiple phases. Rates of retene metabolism increased in an age-dependent manner until adult (pooled) metabolism rates were achieved at ∼12 months. ABPP identified 28 unique CYPs among all samples, and we observed lower amounts of active CYPs in individuals ≤21 months of age compared to the pooled sample. Phenanthrene metabolism correlated to CYPs 1A1, 1A2, 2C8, 4A22, 3A4, and 3A43 and retene metabolism correlated to CYPs 1A1, 1A2, and 2C8 measured by ABPP and vendor-supplied substrate marker activities. These results will aid efforts to determine human health risk and susceptibility to PAHs exposure during early life.
Collapse
Affiliation(s)
- Kari A Gaither
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Whitney L Garcia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biology, Baylor University, Waco, Texas 76706, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
3
|
Putnam EE, Abellon-Ruiz J, Killinger BJ, Rosnow JJ, Wexler AG, Folta-Stogniew E, Wright AT, van den Berg B, Goodman AL. Gut Commensal Bacteroidetes Encode a Novel Class of Vitamin B 12-Binding Proteins. mBio 2022; 13:e0284521. [PMID: 35227073 PMCID: PMC8941943 DOI: 10.1128/mbio.02845-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Human gut commensal Bacteroidetes rely on multiple transport systems to acquire vitamin B12 and related cobamides for fitness in the gut. In addition to a set of conserved transport proteins, these systems also include a diverse repertoire of additional proteins with unknown function. Here, we report the function and structural characterization of one of these proteins, BtuH, which binds vitamin B12 directly via a C-terminal globular domain that has no known structural homologs. This protein is required for efficient B12 transport and competitive fitness in the gut, demonstrating that members of the heterogeneous suite of accessory proteins encoded in Bacteroides cobamide transport system loci can play key roles in vitamin acquisition. IMPORTANCE The gut microbiome is a complex microbial community with important impacts on human health. One of the major groups within the gut microbiome, the Bacteroidetes, rely on their ability to capture vitamin B12 and related molecules for fitness in the gut. Unlike well-studied model organisms, gut Bacteroidetes genomes often include multiple vitamin B12 transport systems with a heterogeneous set of components. The role, if any, of these components was unknown. Here, we identify new proteins that play key roles in vitamin B12 capture in these organisms. Notably, these proteins are associated with some B12 transport systems and not others (even in the same bacterial strain), suggesting that these systems may assemble into functionally distinct machines to capture vitamin B12 and related molecules.
Collapse
Affiliation(s)
- E E Putnam
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| | - J Abellon-Ruiz
- Biosciences Institute, The Medical School, Newcastle Universitygrid.1006.7, Newcastle upon Tyne, United Kingdom
| | - B J Killinger
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - J J Rosnow
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
| | - A G Wexler
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| | - E Folta-Stogniew
- W. M. Keck Biotechnology Resource Laboratory, Yale Universitygrid.47100.32 School of Medicine, New Haven, USA
| | - A T Wright
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - B van den Berg
- Biosciences Institute, The Medical School, Newcastle Universitygrid.1006.7, Newcastle upon Tyne, United Kingdom
| | - A L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, Lindblad P, Allahverdiyeva Y. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. PHYSIOLOGIA PLANTARUM 2021; 173:555-567. [PMID: 33860946 DOI: 10.1111/ppl.13428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic production of molecular hydrogen (H2 ) by cyanobacteria and green algae is a potential source of renewable energy. These organisms are capable of water biophotolysis by taking advantage of photosynthetic apparatus that links water oxidation at Photosystem II and reduction of protons to H2 downstream of Photosystem I. Although the process has a theoretical potential to displace fossil fuels, photosynthetic H2 production in its current state is not yet efficient enough for industrial applications due to a number of physiological, biochemical, and engineering barriers. This article presents a short overview of the metabolic pathways and enzymes involved in H2 photoproduction in cyanobacteria and green algae and our present understanding of the mechanisms of this process. We also summarize recent advances in engineering photosynthetic cell factories capable of overcoming the major barriers to efficient and sustainable H2 production.
Collapse
Affiliation(s)
- Sergey Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Maximilian Böhm
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Stoddard EG, Nag S, Martin J, Tyrrell KJ, Gibbins T, Anderson KA, Shukla AK, Corley R, Wright AT, Smith JN. Exposure to an Environmental Mixture of Polycyclic Aromatic Hydrocarbons Induces Hepatic Cytochrome P450 Enzymes in Mice. Chem Res Toxicol 2021; 34:2145-2156. [PMID: 34472326 DOI: 10.1021/acs.chemrestox.1c00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes (CYPs) play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs), common environmental contaminants. While it is widely accepted that exposure to PAHs induces CYPs, effectively increasing rates of xenobiotic metabolism, dose- and time-response patterns of CYP induction are not well-known. In order to better understand dose- and time-response relationships of individual CYPs following induction, we exposed B6129SF1/J mice to single or repeated doses (2-180 μmol/kg/d) of benzo[a]pyrene (BaP) or Supermix-10, a mixture of the top 10 most abundant PAHs found at the Portland Harbor Superfund Site. In hepatic microsomes from exposed mice, we measured amounts of active CYPs using activity-based protein profiling and total CYP expression using global proteomics. We observed rapid Cyp1a1 induction after 6 h at the lowest PAH exposures and broad induction of many CYPs after 3 daily PAH doses at 72 h following the first dose. Using samples displaying Cyp1a1 induction, we observed significantly higher metabolic affinity for BaP metabolism (Km reduced 3-fold), 3-fold higher intrinsic clearance, but no changes to the Vmax. Mice dosed with the highest PAH exposures exhibited 1.7-5-fold higher intrinsic clearance rates for BaP compared to controls and higher Vmax values indicating greater amounts of enzymes capable of metabolizing BaP. This study demonstrates exposure to PAHs found at superfund sites induces enzymes in dose- and time-dependent patterns in mice. Accounting for specific changes in enzyme profiles, relative rates of PAH bioactivation and detoxification, and resulting risk will help translate internal dosimetry of animal models to humans and improve risk assessments of PAHs at superfund sites.
Collapse
Affiliation(s)
- Ethan G Stoddard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Subhasree Nag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jude Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Teresa Gibbins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Lin VS, Volk RF, DeLeon AJ, Anderson LN, Purvine SO, Shukla AK, Bernstein HC, Smith JN, Wright AT. Structure Dependent Determination of Organophosphate Targets in Mammalian Tissues Using Activity-Based Protein Profiling. Chem Res Toxicol 2019; 33:414-425. [DOI: 10.1021/acs.chemrestox.9b00344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vivian S. Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Regan F. Volk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Adrian J. DeLeon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anil K. Shukla
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hans C. Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø 9019, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø 9019, Norway
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
7
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
8
|
|
9
|
Stoddard EG, Volk RF, Carson JP, Ljungberg CM, Murphree TA, Smith JN, Sadler NC, Shukla AK, Ansong C, Wright AT. Multifunctional Activity-Based Protein Profiling of the Developing Lung. J Proteome Res 2018; 17:2623-2634. [PMID: 29972024 DOI: 10.1021/acs.jproteome.8b00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung diseases and disorders are a leading cause of death among infants. Many of these diseases and disorders are caused by premature birth and underdeveloped lungs. In addition to developmentally related disorders, the lungs are exposed to a variety of environmental contaminants and xenobiotics upon birth that can cause breathing issues and are progenitors of cancer. In order to gain a deeper understanding of the developing lung, we applied an activity-based chemoproteomics approach for the functional characterization of the xenometabolizing cytochrome P450 enzymes, active ATP and nucleotide binding enzymes, and serine hydrolases using a suite of activity-based probes (ABPs). We detected P450 activity primarily in the postnatal lung; using our ATP-ABP, we characterized a wide range of ATPases and other active nucleotide- and nucleic acid-binding enzymes involved in multiple facets of cellular metabolism throughout development. ATP-ABP targets include kinases, phosphatases, NAD- and FAD-dependent enzymes, RNA/DNA helicases, and others. The serine hydrolase-targeting probe detected changes in the activities of several proteases during the course of lung development, yielding insights into protein turnover at different stages of development. Select activity-based probe targets were then correlated with RNA in situ hybridization analyses of lung tissue sections.
Collapse
Affiliation(s)
- Ethan G Stoddard
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Regan F Volk
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - James P Carson
- Texas Advanced Computing Center , University of Texas at Austin , Austin , Texas 78758 , United States
| | - Cecilia M Ljungberg
- Department of Pediatrics, Baylor College of Medicine , Jan and Dan Duncan Neurological Research Center at Texas Children's Hospital , Houston , Texas 77030 , United States
| | - Taylor A Murphree
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Jordan N Smith
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Natalie C Sadler
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Anil K Shukla
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Charles Ansong
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Aaron T Wright
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , Washington 99163 , United States
| |
Collapse
|
10
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|