1
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
2
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sułek M, Kordaczuk J, Mak P, Śmiałek-Bartyzel J, Hułas-Stasiak M, Wojda I. Immune priming modulates Galleria mellonella and Pseudomonas entomophila interaction. Antimicrobial properties of Kazal peptide Pr13a. Front Immunol 2024; 15:1358247. [PMID: 38469316 PMCID: PMC10925678 DOI: 10.3389/fimmu.2024.1358247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.
Collapse
Affiliation(s)
- Michał Sułek
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Śmiałek-Bartyzel
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
4
|
Montanari M, Manière G, Berthelot-Grosjean M, Dusabyinema Y, Gillet B, Grosjean Y, Kurz CL, Royet J. Larval microbiota primes the Drosophila adult gustatory response. Nat Commun 2024; 15:1341. [PMID: 38351056 PMCID: PMC10864365 DOI: 10.1038/s41467-024-45532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
Collapse
Affiliation(s)
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Yves Dusabyinema
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - C Léopold Kurz
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
5
|
Venkataraman S, Rajendran DS, Vaidyanathan VK. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci Biotechnol 2024; 33:245-273. [PMID: 38222912 PMCID: PMC10786815 DOI: 10.1007/s10068-023-01435-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/16/2024] Open
Abstract
Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector's landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
6
|
Khan MN, Bashir S, Imran M. Probiotic characterization of Bacillus species strains isolated from an artisanal fermented milk product Dahi. Folia Microbiol (Praha) 2023; 68:757-769. [PMID: 37055653 DOI: 10.1007/s12223-023-01048-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
Dahi, an artisanal fermented milk product, widely consumed in Pakistan, is microbiologically diverse, and many bacterial communities await investigation. The current study is first to present probiotic assessment of Bacillus species strains isolated from dahi. Based on 49 identified strains assessed, only 6 strains, i.e., Bacillus licheniformis QAUBL19, QAUBL1901, and QAUBL1902; Bacillus mycoides QAUBM19 and QAUBM1901; and Bacillus subtilis QAUBSS1 were having prominent persistence in the simulated gastrointestinal fluids, being non-hemolytic, with no DNase activity. Probiotic characteristics, cholesterol-assimilating, and carbohydrate-fermenting capabilities were assessed for all the strains. These six strains each showed variant cholesterol assimilating abilities. B. licheniformis QAUBL19 retaining most desired probiotic traits presented both notable cholesterol assimilating and bile salt hydrolase activities. It can be used as a probiotic of choice with hypocholesterolemia ability. B. subtilis QAUBSS1 showed wide carbohydrate fermentation ability and strongest antibacterial potential. It is likely to be considered a probiotic for living beings and starter culture for fermentation of food/feed.
Collapse
Affiliation(s)
- Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Saeeda Bashir
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Muangkaew P, De Roo V, Zhou L, Girard L, Cesa-Luna C, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. Stereomeric Lipopeptides from a Single Non-Ribosomal Peptide Synthetase as an Additional Source of Structural and Functional Diversification in Pseudomonas Lipopeptide Biosynthesis. Int J Mol Sci 2023; 24:14302. [PMID: 37762605 PMCID: PMC10531924 DOI: 10.3390/ijms241814302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In Pseudomonas lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive). Here, we report the unprecedented observation of an E/C-domain that acts 'on and off', giving rise to the production of two diastereoisomeric lipopeptides by a single non-ribosomal peptide synthetase system. Using dereplication based on solid-phase peptide synthesis and NMR fingerprinting, we first show that the two cyclic lipopeptides produced by Pseudomonas entomophila COR5 correspond to entolysin A and B originally described for P. entomophila L48. Next, we prove that both are diastereoisomeric homologues differing only in the configuration of a single amino acid. This configurational variability is maintained in multiple Pseudomonas strains and typically occurs in a 3:2 ratio. Bioinformatic analysis reveals a possible correlation with the composition of the flanking sequence of the N-terminal secondary histidine motif characteristic for dual-function E/C-type domains. In permeabilization assays, using propidium iodide entolysin B has a higher antifungal activity compared to entolysin A against Botrytis cinerea and Pyricularia oryzae spores. The fact that configurational homologues are produced by the same NRPS system in a Pseudomonas strain adds a new level of structural and functional diversification to those already known from substrate flexibility during the recruitment of the amino acids and fatty acids and underscores the importance of complete stereochemical elucidation of non-ribosomal lipopeptide structures.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Vic De Roo
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Catherine Cesa-Luna
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Shahid I, Han J, Hanook S, Borchers CH, El Enshasy HA, Mehnaz S. Genome mining of Pseudomonas spp. hints towards the production of under-pitched secondary metabolites. 3 Biotech 2023; 13:182. [PMID: 37193329 PMCID: PMC10182215 DOI: 10.1007/s13205-023-03607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
The recent advances in omics and computational analysis have enabled the capacity to identify the exclusive strain-specific metabolites and novel biosynthetic gene clusters. This study analyzed eight strains of P. aurantiaca including GS1, GS3, GS4, GS6, GS7, FS2, ARS38, PBSt2, one strain of P. chlororaphis RP4, one strain of P. aeruginosa (At1RP4), and one strain of P. fluorescens (RS1) for the production of rhamnolipids, quorum-sensing signals, and osmolytes. Seven rhamnolipid derivatives were variably detected in fluorescent pseudomonads. These rhamnolipids included Rha-C10-C8, Rha-Rha-C10-C10, Rha-C10-C12db, Rha-C10-C10, Rha-Rha-C10-C12, Rha-C10-C12, and Rha-Rha-C10-C12db. Pseudomonas spp. also showed the variable production of osmoprotectants including N-acetyl glutaminyl glutamine amide (NAGGN), betaine, ectoine, and trehalose. Betaine and ectoine were produced by all pseudomonads, however, NAGGN and trehalose were observed by five and three strains, respectively. Four strains including P. chlororaphis (RP4), P. aeruginosa (At1RP4), P. fluorescens (RS1), and P. aurantiaca (PBSt2) were exposed to 1- 4% NaCl concentrations and evaluated for the changes in phenazine production profile which were negligible. AntiSMASH 5.0 platform showed 50 biosynthetic gene clusters in PB-St2, of which 23 (45%) were classified as putative gene clusters with ClusterFinder algorithm, five (10%) were classified as non-ribosomal peptides synthetases (NRPS), five (10%) as saccharides, and four (8%) were classified as putative fatty acids. The genomic attributes and comprehensive insights into the metabolomic profile of these Pseudomonas spp. strains showcase their phytostimulatory, phyto-protective, and osmoprotective effects of diverse crops grown in normal and saline soils. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03607-x.
Collapse
Affiliation(s)
- Izzah Shahid
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Jun Han
- University of Victoria-Genome BC Proteomics Center, University of Victoria, Victoria, BC V8Z 7X8 Canada
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| | - Christoph H. Borchers
- University of Victoria-Genome BC Proteomics Center, University of Victoria, Victoria, BC V8Z 7X8 Canada
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, 21934 Egypt
| | - Samina Mehnaz
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| |
Collapse
|
9
|
Abstract
A major source of pseudomonad-specialized metabolites is the nonribosomal peptide synthetases (NRPSs) assembling siderophores and lipopeptides. Cyclic lipopeptides (CLPs) of the Mycin and Peptin families are frequently associated with, but not restricted to, phytopathogenic species. We conducted an in silico analysis of the NRPSs encoded by lipopeptide biosynthetic gene clusters in nonpathogenic Pseudomonas genomes, covering 13 chemically diversified families. This global assessment of lipopeptide production capacity revealed it to be confined to the Pseudomonas fluorescens lineage, with most strains synthesizing a single type of CLP. Whereas certain lipopeptide families are specific for a taxonomic subgroup, others are found in distant groups. NRPS activation domain-guided peptide predictions enabled reliable family assignments, including identification of novel members. Focusing on the two most abundant lipopeptide families (Viscosin and Amphisin), a portion of their uncharted diversity was mapped, including characterization of two novel Amphisin family members (nepenthesin and oakridgin). Using NMR fingerprint matching, known Viscosin-family lipopeptides were identified in 15 (type) species spread across different taxonomic groups. A bifurcate genomic organization predominates among Viscosin-family producers and typifies Xantholysin-, Entolysin-, and Poaeamide-family producers but most families feature a single NRPS gene cluster embedded between cognate regulator and transporter genes. The strong correlation observed between NRPS system phylogeny and rpoD-based taxonomic affiliation indicates that much of the structural diversity is linked to speciation, providing few indications of horizontal gene transfer. The grouping of most NRPS systems in four superfamilies based on activation domain homology suggests extensive module dynamics driven by domain deletions, duplications, and exchanges. IMPORTANCE Pseudomonas species are prominent producers of lipopeptides that support proliferation in a multitude of environments and foster varied lifestyles. By genome mining of biosynthetic gene clusters (BGCs) with lipopeptide-specific organization, we mapped the global Pseudomonas lipopeptidome and linked its staggering diversity to taxonomy of the producers, belonging to different groups within the major Pseudomonas fluorescens lineage. Activation domain phylogeny of newly mined lipopeptide synthetases combined with previously characterized enzymes enabled assignment of predicted BGC products to specific lipopeptide families. In addition, novel peptide sequences were detected, showing the value of substrate specificity analysis for prioritization of BGCs for further characterization. NMR fingerprint matching proved an excellent tool to unequivocally identify multiple lipopeptides bioinformatically assigned to the Viscosin family, by far the most abundant one in Pseudomonas and with stereochemistry of all its current members elucidated. In-depth analysis of activation domains provided insight into mechanisms driving lipopeptide structural diversification.
Collapse
|
10
|
Volatiles from Pseudomonas palleroniana Strain B-BH16-1 Suppress Aflatoxin Production and Growth of Aspergillus flavus on Coix lacryma-jobi during Storage. Toxins (Basel) 2023; 15:toxins15010077. [PMID: 36668896 PMCID: PMC9861347 DOI: 10.3390/toxins15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Semen coicis is not only a traditional Chinese medicine (TCM), but also a typical food in China, with significant medical and healthcare value. Because semen coicis is rich in starch and oil, it can be easily contaminated with Aspergillus flavus and its aflatoxins (AFs). Preventing and controlling the contamination of semen coicis with Aspergillus flavus and its aflatoxins is vital to ensuring its safety as a drug and as a food. In this study, the endosphere bacteria Pseudomonas palleroniana strain B-BH16-1 produced volatiles that strongly inhibited the mycelial growth and spore formation activity of A. flavus. Gas chromatography-mass spectrometry profiling revealed three volatiles emitted from B-BH16-1, of which 1-undecene was the most abundant. We obtained authentic reference standards for these three volatiles; these significantly reduced mycelial growth and sporulation in Aspergillus, with dimethyl disulfide showing the most robust inhibitory activity. Strain B-BH16-1 was able to completely inhibit the biosynthesis of aflatoxins in semen coicis samples during storage by emitting volatile bioactive components. The microscope revealed severely damaged mycelia and a complete lack of sporulation. This newly identified plant endophyte bacterium was able to strongly inhibit the sporulation and growth of Aspergillus and the synthesis of associated mycotoxins, thus not only providing valuable information regarding an efficient potential strategy for the prevention of A. flavus contamination in TCM and food, but potentially also serving as a reference in the control of toxic fungi.
Collapse
|
11
|
Acken KA, Li B. Pseudomonas virulence factor controls expression of virulence genes in Pseudomonas entomophila. PLoS One 2023; 18:e0284907. [PMID: 37200397 DOI: 10.1371/journal.pone.0284907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Quorum sensing is a communication strategy that bacteria use to collectively alter gene expression in response to cell density. Pathogens use quorum sensing systems to control activities vital to infection, such as the production of virulence factors and biofilm formation. The Pseudomonas virulence factor (pvf) gene cluster encodes a signaling system (Pvf) that is present in over 500 strains of proteobacteria, including strains that infect a variety of plant and human hosts. We have shown that Pvf regulates the production of secreted proteins and small molecules in the insect pathogen Pseudomonas entomophila L48. Here, we identified genes that are likely regulated by Pvf using the model strain P. entomophila L48 which does not contain other known quorum sensing systems. Pvf regulated genes were identified through comparing the transcriptomes of wildtype P. entomophila and a pvf deletion mutant (ΔpvfA-D). We found that deletion of pvfA-D affected the expression of approximately 300 genes involved in virulence, the type VI secretion system, siderophore transport, and branched chain amino acid biosynthesis. Additionally, we identified seven putative biosynthetic gene clusters with reduced expression in ΔpvfA-D. Our results indicate that Pvf controls multiple virulence mechanisms in P. entomophila L48. Characterizing genes regulated by Pvf will aid understanding of host-pathogen interactions and development of anti-virulence strategies against P. entomophila and other pvf-containing strains.
Collapse
Affiliation(s)
- Katie A Acken
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, Zheng J, Mou X, Li H, Ding X, Yang F. Prevalence and Characterization of Serratia marcescens Isolated from Clinical Bovine Mastitis Cases in Ningxia Hui Autonomous Region of China. Infect Drug Resist 2023; 16:2727-2735. [PMID: 37168514 PMCID: PMC10166088 DOI: 10.2147/idr.s408632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of Serratia marcescens isolates from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Methods S. marcescens was identified by the polymerase-chain reaction of 16S rRNA gene and sequencing. Antimicrobial susceptibility was tested by the disk diffusion method. Genes of resistance and virulence were determined by the PCR. Results Overall, S. marcescens were confirmed from 32 of 2897 (1.1%) mastitis milk samples. These isolates showed high resistance to cefazolin (30/32, 93.8%) and chloramphenicol (28/32, 87.5%). A 12.5% (4/32) of the isolates displayed multidrug resistance (MDR). The most prevalent resistant genes found in S. marcescens were TEM (32/32, 100%) and CTX-M (24/32, 75.0%; CTX-M-15, 14/32, 43.8%; CTX-M-14, 8/32, 25.0%; CTX-M-65, 2/32, 6.3%) for extended-spectrum beta-lactamase, cmlA (28/32, 87.5%) and floR (16/32, 50.0%) for chloramphenicol resistance, SIM-1 (2/32, 6.3%) for carbapenemases, and sdeB (28/32, 87.5%), sdeY (26/32, 81.3%), sdeR (26/32, 81.3%) and sdeD (20/32, 62.5%) for efflux pumps. Moreover, all isolates carried virulence genes flhD, entB, and kpn, and most of them contained mrkD (30/32, 93.8%), ycfM (26/32, 81.3%), bsmB (26/32, 81.3%), pigP (26/32, 81.3%), kfu (24/32, 75.0%) and shlB (24/32, 75.0%). Conclusion To our knowledge, this is the first report of genetic determinants for antimicrobial resistance and virulence in S. marcescens isolated from bovine mastitis cases in China. These findings are useful for developing strategies for prevention and treatment of bovine mastitis caused by S. marcescens in China.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jiahao Shen
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xu Sun
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yayuan Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yanan Lv
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xiaoqing Mou
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Hongsheng Li
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
- Correspondence: Feng Yang; Xuezhi Ding, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, No. 335 Jiangouyan, Qilihe District, Lanzhou, Gansu, 730050, People’s Republic of China, Tel +86-931-2115262, Fax +86-931-2114180, Email ;
| |
Collapse
|
13
|
Draft Genome Sequence of Pseudomonas sp. Strain MWU13-3659, Isolated from Commercial Cranberry Bog Soil in Massachusetts, USA. Microbiol Resour Announc 2022; 11:e0088022. [PMID: 36250866 PMCID: PMC9670869 DOI: 10.1128/mra.00880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas sp. strain MWU13-3659 was isolated from cultivated cranberry bog soil in Massachusetts, USA. Its closest known relative is Pseudomonas entomophila (digital DNA-DNA hybridization [d4 formula] value of 57.2% and average nucleotide identity based on BLAST value of 93.90), and its genome contains putative gene clusters for the production of polyketides, siderophores, and cyclic lipopeptides that have insecticidal activity in other proteobacteria.
Collapse
|
14
|
De Roo V, Verleysen Y, Kovács B, De Vleeschouwer M, Muangkaew P, Girard L, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. An Nuclear Magnetic Resonance Fingerprint Matching Approach for the Identification and Structural Re-Evaluation of Pseudomonas Lipopeptides. Microbiol Spectr 2022; 10:e0126122. [PMID: 35876524 PMCID: PMC9431178 DOI: 10.1128/spectrum.01261-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/26/2022] [Indexed: 01/21/2023] Open
Abstract
Cyclic lipopeptides (CLiPs) are secondary metabolites secreted by a range of bacterial phyla. CLiPs from Pseudomonas in particular, display diverse structural variations in terms of the number of amino acid residues, macrocycle size, amino acid identity, and stereochemistry (e.g., d- versus l-amino acids). Reports detailing the discovery of novel or already characterized CLiPs from new sources appear regularly in literature. Increasingly, however, the lack of detailed characterization threatens to cause considerable confusion, especially if configurational heterogeneity is present for one or more amino acids. Using Pseudomonas CLiPs from the Bananamide, Orfamide, and Xantholysin groups as test cases, we demonstrate and validate that the combined 1H and 13C Nuclear Magnetic Resonance (NMR) chemical shifts of CLiPs constitute a spectral fingerprint that is sufficiently sensitive to differentiate between possible diastereomers of a particular sequence even when they only differ in a single d/l configuration. Rapid screening, involving simple matching of the NMR fingerprint of a newly isolated CLiP with that of a reference CLiP of known stereochemistry, can then be applied to resolve dead-ends in configurational characterization and avoid the much more cumbersome chemical characterization protocols. Even when the stereochemistry of a particular reference CLiP remains to be established, its spectral fingerprint allows to quickly verify whether a newly isolated CLiP is novel or already present in the reference collection. We show NMR fingerprinting leads to a simple approach for early on dereplication which should become more effective as more fingerprints are collected. To benefit research involving CLiPs, we have made a publicly available data repository accompanied by a 'knowledge base' at https://www.rhizoclip.be, where we present an overview of published NMR fingerprint data of characterized CLiPs, together with literature data on the originally determined structures. IMPORTANCE Pseudomonas CLiPs are ubiquitous specialized metabolites, impacting the producer's lifestyle and interactions with the (a)biotic environment. Consequently, they generate interest for agricultural and clinical applications. Establishing structure-activity relationships as a premise to their development is hindered because full structural characterization including stereochemical information requires labor-intensive analyses, without guarantee for success. Moreover, increasing use of superficial comparison with previously characterized CLiPs introduces or propagates erroneous attributions, clouding further scientific progress. We provide a generally applicable characterization methodology based on matching NMR spectral fingerprints of newly isolated CLiPs to natural and synthetic reference compounds with (un)known stereochemistry. In addition, NMR fingerprinting is shown to provide a suitable basis for structural dereplication. A publicly available reference compound repository promises to facilitate participation of the lipopeptide research community in structural assessment and dereplication of newly isolated CLiPs, which should also support further developments in genome mining for novel CLiPs.
Collapse
Affiliation(s)
- Vic De Roo
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Yentl Verleysen
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Benjámin Kovács
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Matthias De Vleeschouwer
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Léa Girard
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent, Belgium
| | - René De Mot
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| |
Collapse
|
15
|
Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol 2022; 24:3273-3289. [PMID: 35315557 PMCID: PMC9542179 DOI: 10.1111/1462-2920.15968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.
Collapse
Affiliation(s)
| | | | - Christoph Keel
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Pascale Flury
- Crop Protection – Phytopathology, Department of Crop SciencesResearch Institute of Organic Agriculture FiBLFrickSwitzerland
| |
Collapse
|
16
|
Job V, Gomez-Valero L, Renier A, Rusniok C, Bouillot S, Chenal-Francisque V, Gueguen E, Adrait A, Robert-Genthon M, Jeannot K, Panchev P, Elsen S, Fauvarque MO, Couté Y, Buchrieser C, Attrée I. Genomic erosion and horizontal gene transfer shape functional differences of the ExlA toxin in Pseudomonas spp. iScience 2022; 25:104596. [PMID: 35789842 PMCID: PMC9250014 DOI: 10.1016/j.isci.2022.104596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 12/31/2022] Open
Abstract
Two-partner secretion (TPS) is widespread in the bacterial world. The pore-forming TPS toxin ExlA of Pseudomonas aeruginosa is conserved in pathogenic and environmental Pseudomonas. While P. chlororaphis and P. entomophila displayed ExlA-dependent killing, P. putida did not cause damage to eukaryotic cells. ExlA proteins interacted with epithelial cell membranes; however, only ExlAPch induced the cleavage of the adhesive molecule E-cadherin. ExlA proteins participated in insecticidal activity toward the larvae of Galleria mellonella and the fly Drosophila melanogaster. Evolutionary analyses demonstrated that the differences in the C-terminal domains are partly due to horizontal movements of the operon within the genus Pseudomonas. Reconstruction of the evolutionary history revealed the complex horizontal acquisitions. Together, our results provide evidence that conserved TPS toxins in environmental Pseudomonas play a role in bacteria-insect interactions and discrete differences in CTDs may determine their specificity and mode of action toward eukaryotic cells. ExlA is a two-partner secreted toxin conserved across Pseudomonas spp. Environmental Pseudomonas strains encode ExlA with different cytotoxic activities ExlA of environmental Pseudomonas strains play a role in bacteria-insect interactions ExlBA operon shows a complex evolutionary history of horizontal gene transfer
Collapse
Affiliation(s)
- Viviana Job
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Adèle Renier
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Christophe Rusniok
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Stephanie Bouillot
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Viviane Chenal-Francisque
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Erwan Gueguen
- University of Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Annie Adrait
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France
| | - Mylène Robert-Genthon
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Katy Jeannot
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire de Bactériologie, Centre Hospitalier Universitaire Jean Minjoz, UMR6249 CNRS, Université de Bourgogne-Franche Comté, Besançon, France
| | - Peter Panchev
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | | | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France
- CNRS, CEA, FR2048, Grenoble, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
- Corresponding author
| | - Ina Attrée
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
- Corresponding author
| |
Collapse
|
17
|
Sieksmeyer T, He S, Esparza-Mora MA, Jiang S, Petrašiūnaitė V, Kuropka B, Banasiak R, Julseth MJ, Weise C, Johnston PR, Rodríguez-Rojas A, McMahon DP. Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis. BMC Ecol Evol 2022; 22:67. [PMID: 35585501 PMCID: PMC9118584 DOI: 10.1186/s12862-022-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.
Collapse
Affiliation(s)
- Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.,Department of Biotechnology, German Institute of Food Technology (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Mara Jean Julseth
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195, Berlin, Germany
| | - Alexandro Rodríguez-Rojas
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Internal Medicine, Vetmeduni Vienna, Veterinaerplätz 1, 1210, Vienna, Austria
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany. .,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
18
|
Saati-Santamaría Z, Selem-Mojica N, Peral-Aranega E, Rivas R, García-Fraile P. Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microb Genom 2022; 8:000758. [PMID: 35195510 PMCID: PMC8942027 DOI: 10.1099/mgen.0.000758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Microbes host a huge variety of biosynthetic gene clusters that produce an immeasurable array of secondary metabolites with many different biological activities such as antimicrobial, anticarcinogenic and antiviral. Despite the complex task of isolating and characterizing novel natural products, microbial genomic strategies can be useful for carrying out these types of studies. However, although genomic-based research on secondary metabolism is on the increase, there is still a lack of reports focusing specifically on the genus Pseudomonas. In this work, we aimed (i) to unveil the main biosynthetic systems related to secondary metabolism in Pseudomonas type strains, (ii) to study the evolutionary processes that drive the diversification of their coding regions and (iii) to select Pseudomonas strains showing promising results in the search for useful natural products. We performed a comparative genomic study on 194 Pseudomonas species, paying special attention to the evolution and distribution of different classes of biosynthetic gene clusters and the coding features of antimicrobial peptides. Using EvoMining, a bioinformatic approach for studying evolutionary processes related to secondary metabolism, we sought to decipher the protein expansion of enzymes related to the lipid metabolism, which may have evolved toward the biosynthesis of novel secondary metabolites in Pseudomonas. The types of metabolites encoded in Pseudomonas type strains were predominantly non-ribosomal peptide synthetases, bacteriocins, N-acetylglutaminylglutamine amides and ß-lactones. Also, the evolution of genes related to secondary metabolites was found to coincide with Pseudomonas species diversification. Interestingly, only a few Pseudomonas species encode polyketide synthases, which are related to the lipid metabolism broadly distributed among bacteria. Thus, our EvoMining-based search may help to discover new types of secondary metabolite gene clusters in which lipid-related enzymes are involved. This work provides information about uncharacterized metabolites produced by Pseudomonas type strains, whose gene clusters have evolved in a species-specific way. Our results provide novel insight into the secondary metabolism of Pseudomonas and will serve as a basis for the prioritization of the isolated strains. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | | | - Ezequiel Peral-Aranega
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| |
Collapse
|
19
|
Sharda S, Kawecki TJ, Hollis B. Adaptation to a bacterial pathogen in Drosophila melanogaster is not aided by sexual selection. Ecol Evol 2022; 12:e8543. [PMID: 35169448 PMCID: PMC8840902 DOI: 10.1002/ece3.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent "good genes" is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of "good genes" theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.
Collapse
Affiliation(s)
- Sakshi Sharda
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
20
|
Oni FE, Esmaeel Q, Onyeka JT, Adeleke R, Jacquard C, Clement C, Gross H, Ait Barka E, Höfte M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022; 27:372. [PMID: 35056688 PMCID: PMC8777863 DOI: 10.3390/molecules27020372] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host-microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy-molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant-pathogen interactions and in the enhancement of plant innate immunity.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
- Department of Biological Sciences, Faculty of Science, Anchor University, Ayobo P.M.B 00001, Lagos State, Nigeria
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Joseph Tobias Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike 440001, Abia State, Nigeria;
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Cedric Jacquard
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clement
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tubingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
21
|
Yang R, Li S, Li Y, Yan Y, Fang Y, Zou L, Chen G. Bactericidal Effect of Pseudomonas oryziphila sp. nov., a Novel Pseudomonas Species Against Xanthomonas oryzae Reduces Disease Severity of Bacterial Leaf Streak of Rice. Front Microbiol 2021; 12:759536. [PMID: 34803984 PMCID: PMC8600968 DOI: 10.3389/fmicb.2021.759536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas is a diverse genus of Gammaproteobacteria with increasing novel species exhibiting versatile trains including antimicrobial and insecticidal activity, as well as plant growth-promoting, which make them well suited as biocontrol agents of some pathogens. Here we isolated strain 1257 that exhibited strong antagonistic activity against two pathovars of Xanthomonas oryzae, especially X. oryzae pv. oryzicola (Xoc) responsible for the bacterial leaf streak (BLS) in rice. The phylogenetic, genomic, physiological, and biochemical characteristics support that strain 1257 is a representative of a novel Pseudomonas species that is most closely related to the entomopathogenic bacterium Pseudomonas entomophila. We propose to name it Pseudomonas oryziphila sp. nov. Comparative genomics analyses showed that P. oryziphila 1257 possesses most of the central metabolic genes of two closely related strains P. entomophila L48 and Pseudomonas mosselii CFML 90-83, as well as a set of genes encoding the type IV pilus system, suggesting its versatile metabolism and motility properties. Some features, such as insecticidal toxins, phosphate solubilization, indole-3-acetic acid, and phenylacetic acid degradation, were disclosed. Genome-wide random mutagenesis revealed that the non-ribosomal peptide catalyzed by LgrD may be a major active compound of P. oryziphila 1257 against Xoc RS105, as well as the critical role of the carbamoyl phosphate and the pentose phosphate pathway that control the biosynthesis of this target compound. Our findings demonstrate that 1257 could effectively inhibit the growth and migration of Xoc in rice tissue to prevent the BLS disease. To our knowledge, this is the first report of a novel Pseudomonas species that displays a strong antibacterial activity against Xoc. The results suggest that the P. oryziphila strain could be a promising biological control agent for BLS.
Collapse
Affiliation(s)
- Ruihuan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengzhang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yilang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Transporter Gene-mediated Typing for Detection and Genome Mining of Lipopeptide-producing Pseudomonas. Appl Environ Microbiol 2021; 88:e0186921. [PMID: 34731056 PMCID: PMC8788793 DOI: 10.1128/aem.01869-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological application potential associated with their antimicrobial and/or antiproliferative activities. They are synthesized by multimodular nonribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on the sequence and length of the oligopeptide and size of the macrocycle, if present. The phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved to be a suitable target gene for an alternative PCR method for detecting LP-producing Pseudomonas sp. and did not rely on amplification of catalytic domains of the biosynthetic enzymes. Combined with amplicon sequencing, this approach enabled typing of Pseudomonas strains as potential producers of a LP belonging to one of the known LP families, underscoring its value for strain prioritization. This finding was validated by chemical characterization of known LPs from three different families secreted by novel producers isolated from the rice or maize rhizosphere, namely, the type strains of Pseudomonas fulva (putisolvin), Pseudomonas zeae (tensin), and Pseudomonas xantholysinigenes (xantholysin). In addition, a new member of the Bananamide family, prosekin, was discovered in the type strain of Pseudomonas prosekii, which is an Antarctic isolate. IMPORTANCEPseudomonas spp. are ubiquitous bacteria able to thrive in a wide range of ecological niches, and lipopeptides often support their lifestyle but also their interaction with other micro- and macro-organisms. Therefore, the production of lipopeptides is widespread among Pseudomonas strains. Consequently, Pseudomonas lipopeptide research not only affects chemists and microbiologists but also touches a much broader audience, including biochemists, ecologists, and plant biologists. In this study, we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows us to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.
Collapse
|
23
|
Ferreiro MD, Behrmann LV, Corral A, Nogales J, Gallegos MT. Exploring the expression and functionality of the rsm sRNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 2021; 18:1818-1833. [PMID: 33406981 PMCID: PMC8583166 DOI: 10.1080/15476286.2020.1871217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Lara Vanessa Behrmann
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Ana Corral
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
24
|
Zhou L, de Jong A, Yi Y, Kuipers OP. Identification, Isolation, and Characterization of Medipeptins, Antimicrobial Peptides From Pseudomonas mediterranea EDOX. Front Microbiol 2021; 12:732771. [PMID: 34594316 PMCID: PMC8477016 DOI: 10.3389/fmicb.2021.732771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The plant microbiome is a vastly underutilized resource for identifying new genes and bioactive compounds. Here, we used Pseudomonas sp. EDOX, isolated from the leaf endosphere of a tomato plant grown on a small farm in the Netherlands. To get more insight into its biosynthetic potential, the genome of Pseudomonas sp. EDOX was sequenced and subjected to bioinformatic analyses. The genome sequencing analysis identified strain EDOX as a member of the Pseudomonas mediterranea. In silico analysis for secondary metabolites identified a total of five non-ribosomally synthesized peptides synthetase (NRPS) gene clusters, related to the biosynthesis of syringomycin, syringopeptin, anikasin, crochelin A, and fragin. Subsequently, we purified and characterized several cyclic lipopeptides (CLPs) produced by NRPS, including some of the already known ones, which have biological activity against several plant and human pathogens. Most notably, mass spectrometric analysis led to the discovery of two yet unknown CLPs, designated medipeptins, consisting of a 22 amino acid peptide moiety with varying degrees of activity against Gram-positive and Gram-negative pathogens. Furthermore, we investigated the mode of action of medipeptin A. The results show that medipeptin A acts as a bactericidal antibiotic against Gram-positive pathogens, but as a bacteriostatic antibiotic against Gram-negative pathogens. Medipeptin A exerts its potent antimicrobial activity against Gram-positive bacteria via binding to both lipoteichoic acid (LTA) and lipid II as well as by forming pores in membranes. Collectively, our study provides important insights into the biosynthesis and mode of action of these novel medipeptins from P. mediterranea EDOX.
Collapse
Affiliation(s)
| | | | | | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
26
|
The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group. Microorganisms 2021; 9:microorganisms9081766. [PMID: 34442845 PMCID: PMC8401041 DOI: 10.3390/microorganisms9081766] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is constantly evolving. In this study, whole genome sequencing enabled us to define 43 new Pseudomonas species and provide an update of the Pseudomonas evolutionary and taxonomic relationships. Phylogenies based on the rpoD gene and whole genome sequences, including, respectively, 316 and 313 type strains of Pseudomonas, revealed sixteen groups of Pseudomonas and, together with the distribution of cyclic lipopeptide biosynthesis gene clusters, enabled the partitioning of the P. putida group into fifteen subgroups. Pairwise average nucleotide identities were calculated between type strains and a selection of 60 genomes of non-type strains of Pseudomonas. Forty-one strains were incorrectly assigned at the species level and among these, 19 strains were shown to represent an additional 13 new Pseudomonas species that remain to be formally classified. This work pinpoints the importance of correct taxonomic assignment and phylogenetic classification in order to perform integrative studies linking genetic diversity, lifestyle, and metabolic potential of Pseudomonas spp.
Collapse
|
27
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
28
|
Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen. ACS Chem Biol 2021; 16:501-509. [PMID: 33595276 DOI: 10.1021/acschembio.0c00901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell communication via chemical signals is an essential mechanism that pathogenic bacteria use to coordinate group behaviors and promote virulence. The Pseudomonas virulence factor (pvf) gene cluster is distributed in more than 500 strains of proteobacteria including both plant and human pathogens. The pvf cluster has been implicated in the production of signaling molecules important for virulence; however, the regulatory impact of these signaling molecules on virulence had not been elucidated. Using the insect pathogen Pseudomonas entomophila L48 as a model, we demonstrated that pvf-encoded biosynthetic enzymes produce PVF autoinducers that regulate the expression of pvf genes and a gene encoding the toxin monalysin via quorum sensing. In addition, PVF autoinducers regulate the expression of nearly 200 secreted and membrane proteins, including toxins, motility proteins, and components of the type VI secretion system, which play key roles in bacterial virulence, colonization, and competition with other microbes. Deletion of pvf also altered the secondary metabolome. Six major compounds upregulated by PVF autoinducers were isolated and structurally characterized, including three insecticidal 3-indolyl oxazoles, the labradorins, and three antimicrobial pyrrolizidine alkaloids, the pyreudiones. The signaling properties of PVF autoinducers and their wide-ranging regulatory effects indicate multifaceted roles of PVF in controlling cell physiology and promoting virulence. The broad genome distribution of pvf suggests that PVF-mediated signaling is relevant to many bacteria of agricultural and biomedical significance.
Collapse
|
29
|
The ABC-Type Efflux Pump MacAB Is Involved in Protection of Serratia marcescens against Aminoglycoside Antibiotics, Polymyxins, and Oxidative Stress. mSphere 2021; 6:6/2/e00033-21. [PMID: 33692192 PMCID: PMC8546677 DOI: 10.1128/msphere.00033-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics. IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens. We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.
Collapse
|
30
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
31
|
Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 2020; 10:19135. [PMID: 33154438 PMCID: PMC7644690 DOI: 10.1038/s41598-020-76188-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray-Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector-pathogen interactions.
Collapse
Affiliation(s)
- Gorreti Maria Onyango
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - M Sean Bialosuknia
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - F Anne Payne
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Nicholas Mathias
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - T Alexander Ciota
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - D Laura Kramer
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
32
|
Prokop JW, Shankar R, Gupta R, Leimanis ML, Nedveck D, Uhl K, Chen B, Hartog NL, Van Veen J, Sisco JS, Sirpilla O, Lydic T, Boville B, Hernandez A, Braunreiter C, Kuk CC, Singh V, Mills J, Wegener M, Adams M, Rhodes M, Bachmann AS, Pan W, Byrne-Steele ML, Smith DC, Depinet M, Brown BE, Eisenhower M, Han J, Haw M, Madura C, Sanfilippo DJ, Seaver LH, Bupp C, Rajasekaran S. Virus-induced genetics revealed by multidimensional precision medicine transcriptional workflow applicable to COVID-19. Physiol Genomics 2020; 52:255-268. [PMID: 32437232 PMCID: PMC7303726 DOI: 10.1152/physiolgenomics.00045.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Precision medicine requires the translation of basic biological understanding to medical insights, mainly applied to characterization of each unique patient. In many clinical settings, this requires tools that can be broadly used to identify pathology and risks. Patients often present to the intensive care unit with broad phenotypes, including multiple organ dysfunction syndrome (MODS) resulting from infection, trauma, or other disease processes. Etiology and outcomes are unique to individuals, making it difficult to cohort patients with MODS, but presenting a prime target for testing/developing tools for precision medicine. Using multitime point whole blood (cellular/acellular) total transcriptomics in 27 patients, we highlight the promise of simultaneously mapping viral/bacterial load, cell composition, tissue damage biomarkers, balance between syndromic biology versus environmental response, and unique biological insights in each patient using a single platform measurement. Integration of a transcriptome workflow yielded unexpected insights into the complex interplay between host genetics and viral/bacterial specific mechanisms, highlighted by a unique case of virally induced genetics (VIG) within one of these 27 patients. The power of RNA-Seq to study unique patient biology while investigating environmental contributions can be a critical tool moving forward for translational sciences applied to precision medicine.
Collapse
Affiliation(s)
- Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Rama Shankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ruchir Gupta
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mara L Leimanis
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Derek Nedveck
- Office of Research, Spectrum Health, Grand Rapids, Michigan
| | - Katie Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Nicholas L Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Allergy and Immunology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
- Adult Allergy and Immunology, Spectrum Health, Grand Rapids, Michigan
| | - Jason Van Veen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Joshua S Sisco
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Olivia Sirpilla
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Walsh University, North Canton, Ohio
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brian Boville
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Angel Hernandez
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Chi Braunreiter
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Hematology-Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - ChiuYing Cynthia Kuk
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Varinder Singh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Joshua Mills
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Marc Wegener
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Marie Adams
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Mary Rhodes
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Andre S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - Jian Han
- iRepertoire Inc., Huntsville, Alabama
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Marcus Haw
- Congenital Heart Center, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Casey Madura
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Dominic J Sanfilippo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Laurie H Seaver
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | - Caleb Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
- Office of Research, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
33
|
Yamagishi A, Nakano S, Yamasaki S, Nishino K. An efflux inhibitor of the MacAB pump in Salmonella enterica serovar Typhimurium. Microbiol Immunol 2020; 64:182-188. [PMID: 31825103 DOI: 10.1111/1348-0421.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
Multidrug efflux pumps play an important role in bacterial multidrug resistance by actively excreting antibiotics. The ATP-binding cassette-type drug efflux pump MacAB was originally reported as a macrolide-specific pump. MacAB is also known to be required for the virulence of Salmonella enterica serovar Typhimurium following oral infection in mice. Here, we performed a screening of inhibitors of Salmonella MacAB and found a compound that increased the susceptibility of a MacAB-expressing strain to macrolides. It was previously reported that MacAB is required to resist peroxide-mediated killing in vitro and that a supernatant of wild-type Salmonella rescues the growth defect of a macAB mutant in H2 O2 . In this study, we also found that the MacAB inhibitor reduced the ability of the supernatant to rescue Salmonella cells in H2 O2 . This compound could lead to a better understanding of the function of MacAB.
Collapse
Affiliation(s)
- Ami Yamagishi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sohei Nakano
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
35
|
Bode E, Heinrich AK, Hirschmann M, Abebew D, Shi Y, Vo TD, Wesche F, Shi Y, Grün P, Simonyi S, Keller N, Engel Y, Wenski S, Bennet R, Beyer S, Bischoff I, Buaya A, Brandt S, Cakmak I, Çimen H, Eckstein S, Frank D, Fürst R, Gand M, Geisslinger G, Hazir S, Henke M, Heermann R, Lecaudey V, Schäfer W, Schiffmann S, Schüffler A, Schwenk R, Skaljac M, Thines E, Thines M, Ulshöfer T, Vilcinskas A, Wichelhaus TA, Bode HB. Promoter Activation in Δhfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angew Chem Int Ed Engl 2019; 58:18957-18963. [PMID: 31693786 PMCID: PMC6972681 DOI: 10.1002/anie.201910563] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/02/2022]
Abstract
Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.
Collapse
|
36
|
Bode E, Heinrich AK, Hirschmann M, Abebew D, Shi Y, Vo TD, Wesche F, Shi Y, Grün P, Simonyi S, Keller N, Engel Y, Wenski S, Bennet R, Beyer S, Bischoff I, Buaya A, Brandt S, Cakmak I, Çimen H, Eckstein S, Frank D, Fürst R, Gand M, Geisslinger G, Hazir S, Henke M, Heermann R, Lecaudey V, Schäfer W, Schiffmann S, Schüffler A, Schwenk R, Skaljac M, Thines E, Thines M, Ulshöfer T, Vilcinskas A, Wichelhaus TA, Bode HB. Promoter Activation in Δ
hfq
Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Pseudomonas sp. COW3 Produces New Bananamide-Type Cyclic Lipopeptides with Antimicrobial Activity against Pythium myriotylum and Pyricularia oryzae. Molecules 2019; 24:molecules24224170. [PMID: 31744250 PMCID: PMC6891508 DOI: 10.3390/molecules24224170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas species are metabolically robust, with capacity to produce secondary metabolites including cyclic lipopeptides (CLPs). Herein we conducted a chemical analysis of a crude CLP extract from the cocoyam rhizosphere-derived biocontrol strain Pseudomonas sp. COW3. We performed in silico analyses on its whole genome, and conducted in vitro antagonistic assay using the strain and purified CLPs. Via LC-MS and NMR, we elucidated the structures of four novel members of the bananamide group, named bananamides D-G. Besides variability in fatty acid length, bananamides D-G differ from previously described bananamides A-C and MD-0066 by the presence of a serine and aspartic acid at position 6 and 2, respectively. In addition, bananamide G has valine instead of isoleucine at position 8. Kendrick mass defect (KMD) allowed the assignment of molecular formulae to bananamides D and E. We unraveled a non-ribosomal peptide synthetase cluster banA, banB and banC which encodes the novel bananamide derivatives. Furthermore, COW3 displayed antagonistic activity and mycophagy against Pythium myriotylum, while it mainly showed mycophagy on Pyricularia oryzae. Purified bananamides D-G inhibited the growth of P. myriotylum and P. oryzae and caused hyphal distortion. Our study shows the complementarity of chemical analyses and genome mining in the discovery and elucidation of novel CLPs. In addition, structurally diverse bananamides differ in their antimicrobial activity.
Collapse
|
38
|
Omoboye OO, Oni FE, Batool H, Yimer HZ, De Mot R, Höfte M. Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. FRONTIERS IN PLANT SCIENCE 2019; 10:901. [PMID: 31354771 PMCID: PMC6636606 DOI: 10.3389/fpls.2019.00901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 05/25/2023]
Abstract
Beneficial Pseudomonas spp. produce an array of antimicrobial secondary metabolites such as cyclic lipopeptides (CLPs). We investigated the capacity of CLP-producing Pseudomonas strains and their crude CLP extracts to control rice blast caused by Magnaporthe oryzae, both in a direct manner and via induced systemic resistance (ISR). In planta biocontrol assays showed that lokisin-, white line inducing principle (WLIP)-, entolysin- and N3-producing strains successfully induced resistance to M. oryzae VT5M1. Furthermore, crude extracts of lokisin, WLIP and entolysin gave similar ISR results when tested in planta. In contrast, a xantholysin-producing strain and crude extracts of N3, xantholysin and orfamide did not induce resistance against the rice blast disease. The role of WLIP in triggering ISR was further confirmed by using WLIP-deficient mutants. The severity of rice blast disease was significantly reduced when M. oryzae spores were pre-treated with crude extracts of N3, lokisin, WLIP, entolysin or orfamide prior to inoculation. In vitro microscopic assays further revealed the capacity of crude N3, lokisin, WLIP, entolysin, xantholysin and orfamide to significantly inhibit appressoria formation by M. oryzae. In addition, the lokisin and WLIP biosynthetic gene clusters in the producing strains are described. In short, our study demonstrates the biological activity of structurally diverse CLPs in the control of the rice blast disease caused by M. oryzae. Furthermore, we provide insight into the non-ribosomal peptide synthetase genes encoding the WLIP and lokisin biosynthetic machineries.
Collapse
Affiliation(s)
- Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Humaira Batool
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Henok Zimene Yimer
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Pino-Otín MR, Val J, Ballestero D, Navarro E, Sánchez E, González-Coloma A, Mainar AM. Ecotoxicity of a new biopesticide produced by Lavandula luisieri on non-target soil organisms from different trophic levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:83-93. [PMID: 30927731 DOI: 10.1016/j.scitotenv.2019.03.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Plant-based biopesticides have become an eco-friendly alternative to synthetic pesticides by reducing the undesired environmental impacts and side-effects on human health. However, their effects on the environment and especially on non-target organisms have been little studied. This study analyses the ecotoxicological effects of the extract of Lavandula luisieri on soil non-target organisms from different trophic levels: the earthworm Eisenia fetida, the plant Allium cepa and a natural-soil microbial community whose taxonomy was analysed through 16S rRNA gene sequencing. The extract tested is the hydrolate -product from a semi industrial steam distillation process- of a Spanish pre-domesticated variety of L. luisieri. This hydrolate has been recently shown to have bionematicide activity against the root-knot nematode Meloidogyne javanica. A previous study showed that the main components of the hydrolate are camphor and 2,3,4,4-Tetramethyl-5-methylidenecyclopent-2-en-1-one. Hydrolate caused acute toxicity (LC50 2.2% v/v) on A. cepa, while only a slight toxicity on E. fetida (LC50 > 0.4 mL/g). All the concentrations tested (from 1 to 100% v/v) caused a significant decrease in bacterial growth (LC50 9.8% v/v after 120 h of exposure). The physiological diversity of the community was also significantly altered, except in the case of the lowest concentration of hydrolate (1% v/v). The ability of soil microbial communities to use a variety of carbon sources increased for all substrates at the highest concentrations. These results show that both the plants and bacterial communities of the soil can be affected by the application of biopesticides based on these hydrolates, which highlights the need for a more detailed risk assessment during the development of plant-based products.
Collapse
Affiliation(s)
- Mª Rosa Pino-Otín
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain; Colegio Internacional Ánfora, c/ Pirineos, 8, Cuarte de Huerva, 50410, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Enrique Navarro
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciónes Científicas, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Esther Sánchez
- Colegio Internacional Ánfora, c/ Pirineos, 8, Cuarte de Huerva, 50410, Zaragoza, Spain
| | | | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain
| |
Collapse
|
40
|
Stucki D, Freitak D, Bos N, Sundström L. Stress responses upon starvation and exposure to bacteria in the ant Formica exsecta. PeerJ 2019; 7:e6428. [PMID: 30805249 PMCID: PMC6383555 DOI: 10.7717/peerj.6428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
Organisms are simultaneously exposed to multiple stresses, which requires regulation of the resistance to each stress. Starvation is one of the most severe stresses organisms encounter, yet nutritional state is also one of the most crucial conditions on which other stress resistances depend. Concomitantly, organisms often deploy lower immune defenses when deprived of resources. This indicates that the investment into starvation resistance and immune defenses is likely to be subject to trade-offs. Here, we investigated the impact of starvation and oral exposure to bacteria on survival and gene expression in the ant Formica exsecta. Of the three bacteria used in this study, only Serratia marcescens increased the mortality of the ants, whereas exposure to Escherichia coli and Pseudomonas entomophila alleviated the effects of starvation. Both exposure to bacteria and starvation induced changes in gene expression, but in different directions depending on the species of bacteria used, as well as on the nutritional state of the ants.
Collapse
Affiliation(s)
- Dimitri Stucki
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Dalial Freitak
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Institute of Biology, Division of Zoology, University of Graz, Graz, Austria
| | - Nick Bos
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Section for Ecology & Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
41
|
Oni FE, Geudens N, Omoboye OO, Bertier L, Hua HGK, Adiobo A, Sinnaeve D, Martins JC, Höfte M. Fluorescent Pseudomonas and cyclic lipopeptide diversity in the rhizosphere of cocoyam (Xanthosoma sagittifolium). Environ Microbiol 2019; 21:1019-1034. [PMID: 30623562 DOI: 10.1111/1462-2920.14520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Cocoyam (Xanthosoma sagittifolium (L.)), an important tuber crop in the tropics, is severely affected by the cocoyam root rot disease (CRRD) caused by Pythium myriotylum. The white cocoyam genotype is very susceptible while the red cocoyam has some field tolerance to CRRD. Fluorescent Pseudomonas isolates obtained from the rhizosphere of healthy red and white cocoyams from three different fields in Cameroon were taxonomically characterized. The cocoyam rhizosphere was enriched with P. fluorescens complex and P. putida isolates independent of the plant genotype. LC-MS and NMR analyses revealed that 50% of the Pseudomonas isolates produced cyclic lipopeptides (CLPs) including entolysin, lokisin, WLIP, putisolvin and xantholysin together with eight novel CLPs. In general, CLP types were linked to specific taxonomic groups within the fluorescent pseudomonads. Representative CLP-producing bacteria showed effective control against CRRD while purified CLPs caused hyphal branching or hyphal leakage in P. myriotylum. The structure of cocoyamide A, a CLP which is predominantly produced by P. koreensis group isolates within the P. fluorescens complex is described. Compared with the white cocoyam, the red cocoyam rhizosphere appeared to support a more diverse CLP spectrum. It remains to be investigated whether this contributes to the field tolerance displayed by the red cocoyam.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Niels Geudens
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lien Bertier
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Hoang Gia Khuong Hua
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Amayana Adiobo
- Jay PJ Biotechnology Laboratory, Institute for Agricultural Research for Development (IRAD), Ekona, P.M.B 25, Buea, Cameroon
| | - Davy Sinnaeve
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - José C Martins
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
42
|
Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep 2019; 36:573-592. [DOI: 10.1039/c8np00031j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the development of nonribosomal antibacterial peptides from untapped sources that target multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation
- College of Veterinary Medicine
- China Agricultural University
- China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
43
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
45
|
Ferreiro MD, Nogales J, Farias GA, Olmedilla A, Sanjuán J, Gallegos MT. Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:525-536. [PMID: 29261011 DOI: 10.1094/mpmi-09-17-0232-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 has a complex Gac-rsm global regulatory pathway that controls virulence, motility, production of secondary metabolites, carbon metabolism, and quorum sensing. However, despite the fact that components of this pathway are known, their physiological roles have not yet been established. Regarding the CsrA/RsmA type proteins, five paralogs, three of which are well conserved within the Pseudomonas genus (csrA1, csrA2, and csrA3), have been found in the DC3000 genome. To decipher their function, mutants lacking the three most conserved CsrA proteins have been constructed and their physiological outcomes examined. We show that they exert nonredundant functions and demonstrate that CsrA3 and, to a lesser extent, CsrA2 but not CsrA1 alter the expression of genes involved in a variety of pathways and systems important for motility, exopolysaccharide synthesis, growth, and virulence. Particularly, alginate synthesis, syringafactin production, and virulence are considerably de-repressed in a csrA3 mutant, whereas growth in planta is impaired. We propose that the linkage of growth and symptom development is under the control of CsrA3, which functions as a pivotal regulator of the DC3000 life cycle, repressing virulence traits and promoting cell division in response to environmental cues.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Joaquina Nogales
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Gabriela A Farias
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - María Trinidad Gallegos
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| |
Collapse
|
46
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
47
|
El-Sayed ASA, Akbar A, Iqrar I, Ali R, Norman D, Brennan M, Ali GS. A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol Res 2017; 207:140-152. [PMID: 29458848 DOI: 10.1016/j.micres.2017.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023]
Abstract
Biological control is an eco-friendly strategy for mitigating and controlling plant diseases with negligible effects on human health and environment. Biocontrol agents are mostly isolated from field crops, and microbiomes associated with wild native plants is underexplored. The main objective of this study was to characterize the bacterial isolates associated with Smilax bona-nox L, a successful wild plant with invasive growth habits. Forty morphologically distinct bacterial isolates were recovered from S. bona-nox. Based on 16S rRNA gene sequencing, these isolates belonged to 12 different genera namely Burkholderia, Pseudomonas, Xenophilus, Stenotrophomonas, Pantoea, Enterobactriaceae, Kosakonia, Microbacterium, Curtobacterium, Caulobacter, Lysinibacillus and Bacillus. Among them, Pseudomonas sp. EA6 and Pseudomonas sp. EA14 displayed the highest potential for inhibition of Phytophthora. Based on sequence analysis of rpoD gene, these isolates revealed a 97% identity with a Pseudomonas fluorescence strain. Bioactivity-driven assays for finding bioactive compounds revealed that crude proteins of Pseudomonas sp. EA6 inhibited mycelial growth of P. parasitica, whereas crude proteins of Pseudomonas sp. EA14 displayed negligible activity. Fractionation and enzymatic analyses revealed that the bioactivity of Pseudomonas sp. EA6 was mostly due to glucanolytic enzymes. Comparison of chromatographic profile and bioactivity assays indicated that the secreted glucanolytic enzymes consisted of β-1,3 and β-1,4 glucanases, which acted together in hydrolyzing Phytophthora cell walls. Since the biological activity of the crude glucanolytic extract was >60-fold higher than the purified β-1,3 glucanase, the glucanolytic enzyme system of Pseudomonas sp. EA6 likely acts synergistically in cell wall hydrolysis of P. parasitica.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA; Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Asma Akbar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Irum Iqrar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Robina Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - David Norman
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Mary Brennan
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA.
| |
Collapse
|
48
|
Jo I, Hong S, Lee M, Song S, Kim JS, Mitra AK, Hyun J, Lee K, Ha NC. Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Biophys Res Commun 2017; 494:668-673. [PMID: 29061301 DOI: 10.1016/j.bbrc.2017.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
The MacAB-TolC tripartite efflux pump is involved in resistance to macrolide antibiotics and secretion of protein toxins in many Gram-negative bacteria. The pump spans the entire cell envelope and operates by expelling substances to extracellular space. X-ray crystal and electron microscopic structures have revealed the funnel-like MacA hexamer in the periplasmic space and the cylindrical TolC trimer. Nonetheless, the inner membrane transporter MacB still remains ambiguous in terms of its oligomeric state in the functional complex. In this study, we purified a stable binary complex using a fusion protein of MacA and MacB of Escherichia coli, and then supplemented MacA to meet the correct stoichiometry between the two proteins. The result demonstrated that MacB is a homodimer in the complex, which is consistent with results from the recent complex structure using cryo-electron microscopy single particle analysis. Structural comparison with the previously reported MacB periplasmic domain structure suggests a molecular mechanism for regulation of the activity of MacB via an interaction between the MacB periplasmic domain and MacA. Our results provide a better understanding of the tripartite pumps at the molecular level.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokho Hong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Alok K Mitra
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Chungcheongbukdo 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
49
|
Keshavarz-Tohid V, Taheri P, Muller D, Prigent-Combaret C, Vacheron J, Taghavi SM, Tarighi S, Moënne-Loccoz Y. Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Res Microbiol 2017; 168:760-772. [DOI: 10.1016/j.resmic.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
|
50
|
Olorunleke FE, Kieu NP, De Waele E, Timmerman M, Ongena M, Höfte M. Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. Microbiologyopen 2017. [PMID: 28621084 PMCID: PMC5635164 DOI: 10.1002/mbo3.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cyclic lipopeptides (CLPs) are synthesized by nonribosomal peptide synthetases (NRPS), which are often flanked by LuxR‐type transcriptional regulators. Pseudomonas sp. CMR12a, an effective biocontrol strain, produces two different classes of CLPs namely sessilins and orfamides. The orfamide biosynthesis gene cluster is flanked up‐ and downstream by LuxR‐type regulatory genes designated ofaR1 and ofaR2, respectively, whereas the sessilin biosynthesis gene cluster has one LuxR‐type regulatory gene which is situated upstream of the cluster and is designated sesR. Our study investigated the role of these three regulators in the biosynthesis of orfamides and sessilins. Phylogenetic analyses positioned OfaR1 and OfaR2 with LuxR regulatory proteins of similar orfamide‐producing Pseudomonas strains and the SesR with that of the tolaasin producer, Pseudomonas tolaasii. LC‐ESI‐MS analyses revealed that sessilins and orfamides are coproduced and that production starts in the late exponential phase. However, sessilins are secreted earlier and in large amounts, while orfamides are predominantly retained in the cell. Deletion mutants in ofaR1 and ofaR2 lost the capacity to produce both orfamides and sessilins, whereas the sesR mutant showed no clear phenotype. Additionally, RT‐PCR analysis showed that in the sessilin cluster, a mutation in either ofaR1 or ofaR2 led to weaker transcripts of the biosynthesis genes, sesABC, and putative transporter genes, macA1B1. In the orfamide cluster, mainly the biosynthesis genes ofaBC were affected, while the first biosynthesis gene ofaA and putative macA2B2 transport genes were still transcribed. A mutation in either ofaR1, ofaR2, or sesR genes did not abolish the transcription of any of the other two.
Collapse
Affiliation(s)
- Feyisara E Olorunleke
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nam P Kieu
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Timmerman
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|