1
|
Chen X, Liu Y, Guo W, Wang M, Zhao J, Zhang X, Zheng W. The development and nutritional quality of Lyophyllum decastes affected by monochromatic or mixed light provided by light-emitting diode. Front Nutr 2024; 11:1404138. [PMID: 38860159 PMCID: PMC11163063 DOI: 10.3389/fnut.2024.1404138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Edible fungi has certain photo-sensitivity during the mushroom emergence stage, but there has been few relevant studies on the responses of Lyophyllum decastes to different light quality. L. decastes were planted in growth chambers with different light qualities that were, respectively, white light (CK), monochromatic red light (R), monochromatic blue light (B), mixed red and blue light (RB), and the mixture of far-red and blue light (FrB). The photo-sensitivity of L. decastes was investigated by analyzing the growth characteristics, nutritional quality, extracellular enzymes as well as the light photoreceptor genes in mushroom exposed to different light treatments. The results showed that R led to mycelium degeneration, fungal skin inactivation and failure of primordial formation in L. decastes. The stipe length, stipe diameter, pileus diameter and the weight of fruiting bodies exposed to RB significantly increased by 8.0, 28.7, 18.3, and 58.2% respectively, compared to the control (p < 0.05). B significantly decreased the stipe length and the weight of fruiting body, with a decrease of 8.5 and 20.2% respectively, compared to the control (p < 0.05). Increased color indicators and deepened simulated color were detected in L. decastes pileus treated with B and FrB in relative to the control. Meanwhile, the expression levels of blue photoreceptor genes such as WC-1, WC-2 and Cry-DASH were significantly up-regulated in mushroom exposed to B and FrB (p < 0.05). Additionally, the contents of crude protein and crude polysaccharide in pileus treated with RB were, respectively, increased by 26.5 and 9.4% compared to the control, while those in stipes increased by 5.3 and 58.8%, respectively. Meanwhile, the activities of extracellular enzyme such as cellulase, hemicellulase, laccase, manganese peroxidase, lignin peroxidase and amylase were significant up-regulated in mushroom subjected to RB (p < 0.05), which may promote the degradation of the culture materials. On the whole, the largest volume and weight as well as the highest contents of nutrients were all detected in L. decastes treated with RB. The study provided a theoretical basis for the regulation of light environment in the industrial production of high quality L. decastes.
Collapse
Affiliation(s)
- Xiaoli Chen
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yihan Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticultural and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Wenzhong Guo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfei Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuxiao Zhao
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wengang Zheng
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
3
|
Du Y, Sun J, Tian Z, Cheng Y, Long CA. Effect of blue light treatments on Geotrichum citri-aurantii and the corresponding physiological mechanisms of citrus. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Shen L, Chapeland-Leclerc F, Ruprich-Robert G, Chen Q, Chen S, Adnan M, Wang J, Liu G, Xie N. Involvement of VIVID in white light-responsive pigmentation, sexual development and sterigmatocystin biosynthesis in the filamentous fungus Podospora anserina. Environ Microbiol 2022; 24:2907-2923. [PMID: 35315561 DOI: 10.1111/1462-2920.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Light serves as a source of information and regulates diverse physiological processes in living organisms. Fungi perceive and respond to light through a complex photosensory system. Fungi have evolved the desensitization mechanism to adapt to the changing light signal in a natural environment. White light exerts multiple essential impacts on the model filamentous fungus P. anserina. However, the light sensing and response in this species has not been investigated. In this study, we demonstrated that the loss of function of the light desensitization protein VIVID (VVD) in P. anserina triggered exacerbated light responses, and therefore led to drastic morphological and physiological changes. The white light-sensitive mutant Δvvd showed growth reduction, spermatia overproduction, enhanced hyphae pigmentation and reduced oxidative stress tolerance. We observed the decreased expression level of sterigmatocystin gene cluster by transcriptome analysis, and finally detected the reduced production of sterigmatocystin in Δvvd in response to white light. Our data indicate that VVD acts as a repressor of white collar complex. This study exhibits a vital role of VVD in governing white light-responsive gene expression and secondary metabolite production, and contributes to a better understanding of the photoreceptor VVD in P. anserina. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Shen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Qiyi Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Siyu Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
6
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Pardo-Medina J, Gutiérrez G, Limón MC, Avalos J. Impact of the White Collar Photoreceptor WcoA on the Fusarium fujikuroi Transcriptome. Front Microbiol 2021; 11:619474. [PMID: 33574802 PMCID: PMC7871910 DOI: 10.3389/fmicb.2020.619474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 01/25/2023] Open
Abstract
The proteins of the White Collar 1 family (WC) constitute a major class of flavin photoreceptors, widely distributed in fungi, that work in cooperation with a WC 2 protein forming a regulatory complex. The WC complex was investigated in great detail in Neurospora crassa, a model fungus in photobiology studies, where it controls all its major photoresponses. The fungus Fusarium fujikuroi, a model system in the production of secondary metabolites, contains a single WC-1 gene called wcoA. The best-known light response in this fungus is the photoinduction of the synthesis of carotenoids, terpenoid pigments with antioxidant properties. Loss of WcoA in F. fujikuroi results in a drastic reduction in the mRNA levels of the carotenoid genes, and a diversity of morphological and metabolic changes, including alterations in the synthesis of several secondary metabolites, suggesting a complex regulatory role. To investigate the function of WcoA, the transcriptome of F. fujikuroi was analyzed in the dark and after 15-, 60- or 240-min illumination in a wild strain and in a formerly investigated wcoA insertional mutant. Using a threshold of four-fold change in transcript levels, 298 genes were activated and 160 were repressed in the wild strain under at least one of the light exposures. Different response patterns were observed among them, with genes exhibiting either fast, intermediate, and slow photoinduction, or intermediate or slow repression. All the fast and intermediate photoresponses, and most of the slow ones, were lost in the wcoA mutant. However, the wcoA mutation altered the expression of a much larger number of genes irrespective of illumination, reaching at least 16% of the annotated genes in this fungus. Such genes include many related to secondary metabolism, as well as others related to photobiology and other cellular functions, including the production of hydrophobins. As judged by the massive transcriptomic changes exhibited by the wcoA mutant in the dark, the results point to WcoA as a master regulatory protein in F. fujikuroi, in addition to a central function as the photoreceptor responsible for most of the transcriptional responses to light in this fungus.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Gabriel Gutiérrez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
8
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
9
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|