1
|
Fernández-García G, Valdés-Chiara P, Villazán-Gamonal P, Alonso-Fernández S, Manteca A. Essential Genes Discovery in Microorganisms by Transposon-Directed Sequencing (Tn-Seq): Experimental Approaches, Major Goals, and Future Perspectives. Int J Mol Sci 2024; 25:11298. [PMID: 39457080 PMCID: PMC11508858 DOI: 10.3390/ijms252011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance. Transposon-directed sequencing (Tn-Seq) has emerged as a powerful method for identifying both essential and conditionally essential genes. In this review, we explored Tn-Seq workflows, focusing on eubacterial species and some yeast species. A comparison of 14 eubacteria species revealed 133 conserved essential genes, including those involved in cell division (e.g., ftsA, ftsZ), DNA replication (e.g., dnaA, dnaE), ribosomal function, cell wall synthesis (e.g., murB, murC), and amino acid synthesis (e.g., alaS, argS). Many other essential genes lack clear orthologues across different microorganisms, making them specific to each organism studied. Conditionally essential genes were identified in 18 bacterial species grown under various conditions, but their conservation was low, reflecting dependence on specific environments and microorganisms. Advances in Tn-Seq are expected to reveal more essential genes in the near future, deepening our understanding of microbial biology and enhancing our ability to manipulate microbial growth, as well as both the primary and secondary metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Angel Manteca
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Dietz BR, Nelson TJ, Olszewski NE, Barney BM. A deoxyviolacein-based transposon insertion vector for pigmented tracer studies. Microbiologyopen 2024; 13:e1425. [PMID: 38987999 PMCID: PMC11236898 DOI: 10.1002/mbo3.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.
Collapse
Affiliation(s)
- Benjamin R Dietz
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Tyler J Nelson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Neil E Olszewski
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
4
|
Gluconacetobacter diazotrophicus Gene Fitness during Diazotrophic Growth. Appl Environ Microbiol 2022; 88:e0124122. [PMID: 36374093 PMCID: PMC9746312 DOI: 10.1128/aem.01241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.
Collapse
|
5
|
Rosconi F, Rudmann E, Li J, Surujon D, Anthony J, Frank M, Jones DS, Rock C, Rosch JW, Johnston CD, van Opijnen T. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat Microbiol 2022; 7:1580-1592. [PMID: 36097170 PMCID: PMC9519441 DOI: 10.1038/s41564-022-01208-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Many bacterial species are represented by a pan-genome, whose genetic repertoire far outstrips that of any single bacterial genome. Here we investigate how a bacterial pan-genome might influence gene essentiality and whether essential genes that are initially critical for the survival of an organism can evolve to become non-essential. By using Transposon insertion sequencing (Tn-seq), whole-genome sequencing and RNA-seq on a set of 36 clinical Streptococcus pneumoniae strains representative of >68% of the species' pan-genome, we identify a species-wide 'essentialome' that can be subdivided into universal, core strain-specific and accessory essential genes. By employing 'forced-evolution experiments', we show that specific genetic changes allow bacteria to bypass essentiality. Moreover, by untangling several genetic mechanisms, we show that gene essentiality can be highly influenced by and/or be dependent on: (1) the composition of the accessory genome, (2) the accumulation of toxic intermediates, (3) functional redundancy, (4) efficient recycling of critical metabolites and (5) pathway rewiring. While this functional characterization underscores the evolvability potential of many essential genes, we also show that genes with differential essentiality remain important antimicrobial drug target candidates, as their inactivation almost always has a severe fitness cost in vivo.
Collapse
Affiliation(s)
| | - Emily Rudmann
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Jien Li
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Defne Surujon
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Jon Anthony
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Matthew Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Transcriptomic Response of the Diazotrophic Bacteria Gluconacetobacter diazotrophicus Strain PAL5 to Iron Limitation and Characterization of the fur Regulatory Network. Int J Mol Sci 2022; 23:ijms23158533. [PMID: 35955667 PMCID: PMC9368920 DOI: 10.3390/ijms23158533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.
Collapse
|
7
|
Grillo-Puertas M, Villegas JM, Pankievicz VCS, Tadra-Sfeir MZ, Teles Mota FJ, Hebert EM, Brusamarello-Santos L, Pedraza RO, Pedrosa FO, Rapisarda VA, Souza EM. Transcriptional Responses of Herbaspirillum seropedicae to Environmental Phosphate Concentration. Front Microbiol 2021; 12:666277. [PMID: 34177845 PMCID: PMC8222739 DOI: 10.3389/fmicb.2021.666277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing endophytic bacterium associated with important cereal crops, which promotes plant growth, increasing their productivity. The understanding of the physiological responses of this bacterium to different concentrations of prevailing nutrients as phosphate (Pi) is scarce. In some bacteria, culture media Pi concentration modulates the levels of intracellular polyphosphate (polyP), modifying their cellular fitness. Here, global changes of H. seropedicae SmR1 were evaluated in response to environmental Pi concentrations, based on differential intracellular polyP levels. Cells grown in high-Pi medium (50 mM) maintained high polyP levels in stationary phase, while those grown in sufficient Pi medium (5 mM) degraded it. Through a RNA-seq approach, comparison of transcriptional profiles of H. seropedicae cultures revealed that 670 genes were differentially expressed between both Pi growth conditions, with 57% repressed and 43% induced in the high Pi condition. Molecular and physiological analyses revealed that aspects related to Pi metabolism, biosynthesis of flagella and chemotaxis, energy production, and polyhydroxybutyrate metabolism were induced in the high-Pi condition, while those involved in adhesion and stress response were repressed. The present study demonstrated that variations in environmental Pi concentration affect H. seropedicae traits related to survival and other important physiological characteristics. Since environmental conditions can influence the effectiveness of the plant growth-promoting bacteria, enhancement of bacterial robustness to withstand different stressful situations is an interesting challenge. The obtained data could serve not only to understand the bacterial behavior in respect to changes in rhizospheric Pi gradients but also as a base to design strategies to improve different bacterial features focusing on biotechnological and/or agricultural purposes.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Josefina M. Villegas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Vânia C. S. Pankievicz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Francisco J. Teles Mota
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elvira M. Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | | | - Raul O. Pedraza
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fabio O. Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviana A. Rapisarda
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. J Bacteriol 2021; 203:JB.00432-20. [PMID: 33257523 DOI: 10.1128/jb.00432-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.
Collapse
|
9
|
Chand Y, Alam MA, Singh S. Pan-genomic analysis of the species Salmonella enterica: Identification of core essential and putative essential genes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Fabian BK, Tetu SG, Paulsen IT. Application of Transposon Insertion Sequencing to Agricultural Science. FRONTIERS IN PLANT SCIENCE 2020; 11:291. [PMID: 32256512 PMCID: PMC7093568 DOI: 10.3389/fpls.2020.00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated bacteria have the ability to positively affect plant growth and there is growing interest in utilizing such bacteria in agricultural settings to reduce reliance on pesticides and fertilizers. However, our capacity to utilize microbes in this way is currently limited due to patchy understanding of bacterial-plant interactions at a molecular level. Traditional methods of studying molecular interactions have sought to characterize the function of one gene at a time, but the slow pace of this work means the functions of the vast majority of bacterial genes remain unknown or poorly understood. New approaches to improve and speed up investigations into the functions of bacterial genes in agricultural systems will facilitate efforts to optimize microbial communities and develop microbe-based products. Techniques enabling high-throughput gene functional analysis, such as transposon insertion sequencing analyses, have great potential to be widely applied to determine key aspects of plant-bacterial interactions. Transposon insertion sequencing combines saturation transposon mutagenesis and high-throughput sequencing to simultaneously investigate the function of all the non-essential genes in a bacterial genome. This technique can be used for both in vitro and in vivo studies to identify genes involved in microbe-plant interactions, stress tolerance and pathogen virulence. The information provided by such investigations will rapidly accelerate the rate of bacterial gene functional determination and provide insights into the genes and pathways that underlie biotic interactions, metabolism, and survival of agriculturally relevant bacteria. This knowledge could be used to select the most appropriate plant growth promoting bacteria for a specific set of conditions, formulating crop inoculants, or developing crop protection products. This review provides an overview of transposon insertion sequencing, outlines how this approach has been applied to study plant-associated bacteria, and proposes new applications of these techniques for the benefit of agriculture.
Collapse
Affiliation(s)
- Belinda K. Fabian
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Morinière L, Lecomte S, Gueguen E, Bertolla F. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microb Genom 2019; 7. [PMID: 33760724 PMCID: PMC8627662 DOI: 10.1099/mgen.0.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Solène Lecomte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, F 69622 Villeurbanne, France
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
12
|
Kong X, Zhu B, Stone VN, Ge X, El-Rami FE, Donghai H, Xu P. ePath: an online database towards comprehensive essential gene annotation for prokaryotes. Sci Rep 2019; 9:12949. [PMID: 31506471 PMCID: PMC6737131 DOI: 10.1038/s41598-019-49098-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/15/2019] [Indexed: 02/01/2023] Open
Abstract
Experimental techniques for identification of essential genes (EGs) in prokaryotes are usually expensive, time-consuming and sometimes unrealistic. Emerging in silico methods provide alternative methods for EG prediction, but often possess limitations including heavy computational requirements and lack of biological explanation. Here we propose a new computational algorithm for EG prediction in prokaryotes with an online database (ePath) for quick access to the EG prediction results of over 4,000 prokaryotes ( https://www.pubapps.vcu.edu/epath/ ). In ePath, gene essentiality is linked to biological functions annotated by KEGG Ortholog (KO). Two new scoring systems, namely, E_score and P_score, are proposed for each KO as the EG evaluation criteria. E_score represents appearance and essentiality of a given KO in existing experimental results of gene essentiality, while P_score denotes gene essentiality based on the principle that a gene is essential if it plays a role in genetic information processing, cell envelope maintenance or energy production. The new EG prediction algorithm shows prediction accuracy ranging from 75% to 91% based on validation from five new experimental studies on EG identification. Our overall goal with ePath is to provide a comprehensive and reliable reference for gene essentiality annotation, facilitating the study of those prokaryotes without experimentally derived gene essentiality information.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Victoria N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Fadi E El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Huangfu Donghai
- Application Services, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America.
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| |
Collapse
|
13
|
Trovero MF, Scavone P, Platero R, de Souza EM, Fabiano E, Rosconi F. Herbaspirillum seropedicae Differentially Expressed Genes in Response to Iron Availability. Front Microbiol 2018; 9:1430. [PMID: 30018605 PMCID: PMC6037834 DOI: 10.3389/fmicb.2018.01430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/11/2018] [Indexed: 01/20/2023] Open
Abstract
Herbaspirillum seropedicae Z67 is a nitrogen-fixing endophyte that colonizes many important crops. Like in almost all organisms, vital cellular processes of this endophyte are iron dependent. In order to efficiently acquire iron to fulfill its requirements, this bacterium produces the siderophores serobactins. However, the presence in its genome of many others iron acquisition genes suggests that serobactins are not the only strategy used by H. seropedicae to overcome metal deficiency. The aim of this work was to identify genes and proteins differentially expressed by cells growing in low iron conditions in order to describe H. seropedicae response to iron limitation stress. For this purpose, and by using a transcriptomic approach, we searched and identified a set of genes up-regulated when iron was scarce. One of them, Hsero_2337, codes for a TonB-dependent transporter/transducer present in the serobactins biosynthesis genomic locus, with an unknown function. Another TonB-dependent receptor, the one encoded by Hsero_1277, and an inner membrane ferrous iron permease, coded by Hsero_2720, were also detected. By using a proteomic approach focused in membrane proteins, we identified the specific receptor for iron-serobactin internalization SbtR and two non-characterized TonB-dependent receptors (coded by genes Hsero_1277 and Hsero_3255). We constructed mutants on some of the identified genes and characterized them by in vitro growth, biofilm formation, and interaction with rice plants. Characterization of mutants in gene Hsero_2337 showed that the TonB-dependent receptor coded by this gene has a regulatory role in the biosynthesis of serobactins, probably by interacting with the alternative sigma factor PfrI, coded by gene Hsero_2338. Plant colonization of the mutant strains was not affected, since the mutant strain normally colonize the root and aerial part of rice plants. These results suggest that the strategies used by H. seropedicae to acquire iron inside plants are far more diverse than the ones characterized in this work. In vivo expression studies or colonization competition experiments between the different mutant strains could help us in future works to determine the relative importance of the different iron acquisition systems in the interaction of H. seropedicae with rice plants.
Collapse
Affiliation(s)
- María F Trovero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Scavone
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Raúl Platero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Emanuel M de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Rosconi
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
14
|
Duong DA, Jensen RV, Stevens AM. Discovery of Pantoea stewartii ssp. stewartii genes important for survival in corn xylem through a Tn-Seq analysis. MOLECULAR PLANT PATHOLOGY 2018; 19:1929-1941. [PMID: 29480976 PMCID: PMC6638119 DOI: 10.1111/mpp.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/29/2023]
Abstract
The bacterium Pantoea stewartii ssp. stewartii causes Stewart's wilt disease in corn. Pantoea stewartii is transmitted to plants via corn flea beetles, where it first colonizes the apoplast causing water-soaked lesions, and then migrates to the xylem and forms a biofilm that blocks water transport. Bacterial quorum sensing ensures that the exopolysaccharide production necessary for biofilm formation occurs only at high cell density. A genomic-level transposon sequencing (Tn-Seq) analysis was performed to identify additional bacterial genes essential for survival in planta and to provide insights into the plant-microbe interactions occurring during wilt disease. A mariner transposon library of approximately 40 000 mutants was constructed and used to inoculate corn seedlings through a xylem infection model. Cultures of the library grown in Luria-Bertani (LB) broth served as the in vitro pre-inoculation control. Tn-Seq analysis showed that the number of transposon mutations was reduced by more than 10-fold for 486 genes in planta compared with the library that grew in LB, suggesting that they are important for xylem survival. Interestingly, a small set of genes had a higher abundance of mutants in planta versus in vitro conditions, indicating enhanced strain fitness with loss of these genes inside the host. In planta competition assays retested the trends of the Tn-Seq data for several genes, including two outer membrane proteins, Lon protease and two quorum sensing-associated transcription factors, RcsA and LrhA. Virulence assays were performed to check for correlation between growth/colonization and pathogenicity. This study demonstrates the capacity of a Tn-Seq approach to advance our understanding of P. stewartii-corn interactions.
Collapse
Affiliation(s)
- Duy An Duong
- Department of Biological SciencesVirginia TechBlacksburgVA 24061USA
| | | | - Ann M. Stevens
- Department of Biological SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
15
|
Cardona ST, Choy M, Hogan AM. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. J Membr Biol 2017; 251:75-89. [DOI: 10.1007/s00232-017-9995-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 01/22/2023]
|
16
|
Abstract
BACKGROUND Campylobacter species are a leading cause of bacterial foodborne illness worldwide. Despite the global efforts to curb them, Campylobacter infections have increased continuously in both developed and developing countries. The development of effective strategies to control the infection by this pathogen is warranted. The essential genes of bacteria are the most prominent targets for this purpose. In this study, we used transposon sequencing (Tn-seq) of a genome-saturating library of Tn5 insertion mutants to define the essential genome of C. jejuni at a high resolution. RESULT We constructed a Tn5 mutant library of unprecedented complexity in C. jejuni NCTC 11168 with 95,929 unique insertions throughout the genome and used the genomic DNA of the library for the reconstruction of Tn5 libraries in the same (C. jejuni NCTC 11168) and different strain background (C. jejuni 81-176) through natural transformation. We identified 166 essential protein-coding genes and 20 essential transfer RNAs (tRNA) in C. jejuni NCTC 11168 which were intolerant to Tn5 insertions during in vitro growth. The reconstructed C. jejuni 81-176 library had 384 protein coding genes with no Tn5 insertions. Essential genes in both strain backgrounds were highly enriched in the cluster of orthologous group (COG) categories of 'Translation, ribosomal structure and biogenesis (J)', 'Energy production and conversion (C)', and 'Coenzyme transport and metabolism (H)'. CONCLUSION Comparative analysis among this and previous studies identified 50 core essential genes of C. jejuni, which can be further investigated for the development of novel strategies to control the spread of this notorious foodborne bacterial pathogen.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Present Address: Department of Microbiology and Immunology, Clinical Translational Research Building, University of Louisville, Louisville, KY 40202 USA
| | - Tieshan Jiang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|