1
|
Yousif NM, Gomaa OM. Screen-printed biosensor based on electro-polymerization of bio-composite for nitrate detection in aqueous media. ENVIRONMENTAL TECHNOLOGY 2024; 45:2363-2374. [PMID: 36689460 DOI: 10.1080/09593330.2023.2172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Bacillus sp. possessing a periplasmic nitrate reductase was used as a recognition element to develop a nitrate biosensor. The bacteria was embedded within a polyaniline (PANI) electro-conductive matrix via electro-polymerization on miniaturized carbon screen-printed electrodes (SPE) at 100 mV/s and scan rate from -0.35 V to + 1.7 V. Surface medication of SPE was verified via Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The optimal bacterial density was OD600 1.2. To enhance the biosensors performance, Bacillus sp. was (1) grown in riboflavin (RF) inducing media as an endogenous redox mediator and (2) exposed to different gamma radiation doses as a physical method to increase electron transfer. Results show a link between exposing cells to gamma irradiation stress, this was evident by electron spin resonance (ESR) and changes in FTIR spectrum, in addition to the increase in catalase enzyme. The nitrate limit of detection (LOD) was 0.5-25 mg/L for non-irradiated RF induced immobilized cells and LOD was 0.5-75 mg/L nitrate for 2 kGy gamma irradiated cells. The prepared biosensor showed acceptable reproducibility and multiple usages after storage at 4°C over 3 months. Low cost and simple preparation allow the biosensor to be mass-produced as a disposable device. Bacillus sp. and its endogenous redox mediator immobilized within polyaniline are good candidates for the improvement of amperometric biosensors for the quantification of nitrate in aqueous solutions.
Collapse
Affiliation(s)
- Nashwa M Yousif
- Solid State Physics and Accelerators Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
de Lemos EA, Procópio L, da Mota FF, Jurelevicius D, Rosado AS, Seldin L. Molecular characterization of Paenibacillus antarcticus IPAC21, a bioemulsifier producer isolated from Antarctic soil. Front Microbiol 2023; 14:1142582. [PMID: 37025627 PMCID: PMC10072262 DOI: 10.3389/fmicb.2023.1142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.
Collapse
Affiliation(s)
- Ericka Arregue de Lemos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Procópio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Lucy Seldin,
| |
Collapse
|
3
|
D’aloisio G, Acevedo MB, Angulo-Alcalde A, Trujillo V, Molina JC. Moderate ethanol exposure during early ontogeny of the rat alters respiratory plasticity, ultrasonic distress vocalizations, increases brain catalase activity, and acetaldehyde-mediated ethanol intake. Front Behav Neurosci 2022; 16:1031115. [DOI: 10.3389/fnbeh.2022.1031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Early ontogeny of the rat (late gestation and postnatal first week) is a sensitive period to ethanol’s positive reinforcing effects and its detrimental effects on respiratory plasticity. Recent studies show that acetaldehyde, the first ethanol metabolite, plays a key role in the modulation of ethanol motivational effects. Ethanol brain metabolization into acetaldehyde via the catalase system appears critical in modulating ethanol positive reinforcing consequences. Catalase system activity peak levels occur early in the ontogeny. Yet, the role of ethanol-derived acetaldehyde during the late gestational period on respiration response, ultrasonic vocalizations (USVs), and ethanol intake during the first week of the rat remains poorly explored. In the present study, pregnant rats were given a subcutaneous injection of an acetaldehyde-sequestering agent (D-penicillamine, 50 mg/kg) or saline (0.9% NaCl), 30 min prior to an intragastric administration of ethanol (2.0 g/kg) or water (vehicle) on gestational days 17–20. Respiration rates (breaths/min) and apneic episodes in a whole-body plethysmograph were registered on postnatal days (PDs) 2 and 4, while simultaneously pups received milk or ethanol infusions for 40-min in an artificial lactation test. Each intake test was followed by a 5-min long USVs emission record. On PD 8, immediately after pups completed a 15-min ethanol intake test, brain samples were collected and kept frozen for catalase activity determination. Results indicated that a moderate experience with ethanol during the late gestational period disrupted breathing plasticity, increased ethanol intake, as well brain catalase activity. Animals postnatally exposed to ethanol increased their ethanol intake and exerted differential affective reactions on USVs and apneic episodes depending on whether the experience with ethanol occur prenatal or postnatally. Under the present experimental conditions, we failed to observe, a clear role of acetaldehyde mediating ethanol’s effects on respiratory plasticity or affective states, nevertheless gestational acetaldehyde was of crucial importance in determining subsequent ethanol intake affinity. As a whole, results emphasize the importance of considering the participation of acetaldehyde in fetal programming processes derived from a brief moderate ethanol experience early in development, which in turn, argues against “safe or harmless” ethanol levels of exposure.
Collapse
|
4
|
Matyszczuk K, Krzepiłko A. Model Study for Interaction of Sublethal Doses of Zinc Oxide Nanoparticles with Environmentally Beneficial Bacteria Bacillus thuringiensis and Bacillus megaterium. Int J Mol Sci 2022; 23:ijms231911820. [PMID: 36233126 PMCID: PMC9570281 DOI: 10.3390/ijms231911820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs), due to their antibacterial effects, are commonly used in various branches of the economy and can affect rhizobacteria that promote plant growth. We describe the effect of ZnO NPs on two model bacteria strains, B. thuringiensis and B. megaterium, that play an important role in the environment. The MIC (minimum inhibitory concentration) value determined after 48 h of incubation with ZnO NPs was more than 1.6 mg/mL for both strains tested, while the MBC (minimum bactericidal concentration) was above 1.8 mg/mL. We tested the effect of ZnO NPs at concentrations below the MIC (0.8 mg/mL, 0.4 mg/mL and 0.2 mg/mL (equal to 50%, 25% and 12,5% MIC, respectively) in order to identify the mechanisms activated by Bacillus species in the presence of these nanoparticles. ZnO NPs in sublethal concentrations inhibited planktonic cell growth, stimulated endospore formation and reduced decolorization of Evans blue. The addition of ZnO NPs caused oxidative stress, measured using nitroblue tetrazolium (NBT), and reduced the activity of catalase. It was confirmed that zinc oxide nanoparticles in sublethal concentrations change metabolic processes in Bacillus bacteria that are important for their effects on the environment. B. thuringiensis after treatment with ZnO NPs decreased indole acetic acid (IAA) production and increased biofilm formation, whereas B. megaterium decreased IAA production but, inversely, increased biofilm formation. Comparison of different Bacillus species in a single experiment made it possible to better understand the mechanisms of toxicity of zinc oxide nanoparticles and the individual reactions of closely related bacterial species.
Collapse
|
5
|
Zinc Oxide Nanoparticles Enhance the Tolerance and Remediation Potential of Bacillus spp. against Heavy Metal Stress. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/1774528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles and bacteria have received a great attention worldwide due to their ability to remove heavy metals (HMs) from wastewater. The current study is aimed at finding the interaction of HMs-resistance strains (Bacillus cereus and Lysinibacillus macroides) with different concentrations (5, 10, 15, 20, and 25 mg/L) of zinc oxide nanoparticles (ZnO NPs) and how they would cope with HM stress (Pb, Cd, Cr, and Cu). The growth rate and tolerance potential of bacteria were increased at lowered concentrations (5 and 10 mg/L) of ZnO NPs against HMs while it was unaffected at higher concentrations of ZnO NPs. These findings were confirmed by minimum inhibition zone and higher zinc solubilization at lower concentrations of ZnO NPs. Scanning electron microscopy (SEM) revealed that higher concentrations of ZnO NP increased HM accumulation in bacteria cells which had a significant impact on bacterial morphology and caused pores in bacterial membrane while in the case of lower concentrations, the cell remained unaffected. These results were further supported by the less production of antioxidant enzymes (SOD, POD, and CAT), thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) contents at lower concentrations of ZnO NPs against heavy metal stress. This study suggested that synergistic treatment of Bacillus spp. with lower concentrations of ZnO NPs enhances the tolerance potential and significantly reduces the HM toxicity.
Collapse
|
6
|
Micheli L, Collodel G, Moretti E, Noto D, Menchiari A, Cerretani D, Crispino S, Signorini C. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox Rep 2021; 26:18-28. [PMID: 33563132 PMCID: PMC7889094 DOI: 10.1080/13510002.2021.1884802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives In cancer survivors, chemotherapy-associated adverse neurological effects are described as side effects in non-targeted tissue. We investigated the role of redox-imbalance in neuronal damage by a relative low dose of Docetaxel (DTX). Methods The neuroblastoma cells (SH-SY5Y cells) were exposed to DTX at a dose of 1.25 nM for 6 h. Antioxidant defenses (i.e. ascorbic acid, glutathione, and catalase) and lipid oxidation products (i.e. F2-isoprostanes) were evaluated. To investigate cell ultrastructure and tubulin localisation, transmission electron microscopy (TEM) and immunofluorescence techniques were applied. Results In the SH-SY5Y cells, DTX induced a significant reduction of total glutathione (P < 0.001) and ascorbic acid (P < 0.05), and an increase in both total F2-Isoprostanes (P < 0.05) and catalase activity (P < 0.05), as compared to untreated cells. Additionally, TEM showed a significant increase in cells with apoptotic characteristics. Immunolocalisation of tubulin showed a compromised cytoskeletal organisation. Discussion The investigated sublethal dose of DTX, to which non-targeted cells may be exposed throughout the duration of chemotherapy treatment, induces a redox imbalance resulting in a specific modulation of the antioxidant response. This study provides new insights into DTX-induced cellular mechanisms useful for evaluating whether the concomitant use of antioxidants associated with chemotherapy mitigates chemotherapy side effects in cancer survivors.
Collapse
Affiliation(s)
- Lucia Micheli
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Daniela Cerretani
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Zarmehrkhorshid R, Shafiei R, Delvigne F. Modified semi-continuous fermentation for resuscitating nongrowing cells during high-temperature gluconic acid production by Acetobacter senegalensis. J Appl Microbiol 2019; 127:1101-1112. [PMID: 31283860 DOI: 10.1111/jam.14371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022]
Abstract
AIMS The formation of metabolically inactive and nongrowing cells is an inevitable by-product of intensive fermentation. This study investigated whether co-feeding can be used to resuscitate nongrowing Acetobacter senegalensis cells to enable them to produce gluconic acid in successive fermentation runs at 38°C. METHODS AND RESULTS In the first fermentation cycle, 75 g l-1 of glucose were converted to gluconic acid. Subsequently, however, stationary-phase cells were unable to initiate a new fermentation cycle. The majority of stationary-phase cells (97%) were nonculturable on glucose at 38°C. In addition, 54 and 41% of cells contained non-active cellular dehydrogenases and a compromised cell envelope respectively. Co-feeding stationary-phase cells with a mixture of ethanol, glucose and acetic acid for 7 h enabled these cells to grow on 75 g l-1 of glucose and produce gluconic acid. Additionally, 74% of cells contained active forms of cellular dehydrogenases after 7 h of co-feeding. However, co-feeding did not improve cell envelope integrity. Quantification of cellular NAD content showed that stationary-phase cells contained moderately reduced levels of total NAD (NADt) as compared with exponential-phase cells. Interestingly, the analysis of stationary-phase cells showed that co-feeding resulted in higher levels of NADt and NADH, suggesting that the regeneration of NADH is one of the limiting factors of glucose consumption. Expression of catalase and superoxide dismutase was increased in stationary-phase cells, but analysis of protein carbonylation and lipid peroxidation did not confirm an extensive oxidative stress. CONCLUSIONS Co-feeding with favourable nutrients may enable resuscitation of cells and utilization of less-favourable carbon sources in successive cycles. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposed a unique method for resuscitation of nongrowing cells during high-temperature fermentation. By applying this method, cells can be used for consecutive fermentation cycles.
Collapse
Affiliation(s)
- R Zarmehrkhorshid
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, TERRA Research and Teaching Centre, University of Liège, Gembloux, Belgium
| | - R Shafiei
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - F Delvigne
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, TERRA Research and Teaching Centre, University of Liège, Gembloux, Belgium
| |
Collapse
|
8
|
Bacillus cereus cshA Is Expressed during the Lag Phase of Growth and Serves as a Potential Marker of Early Adaptation to Low Temperature and pH. Appl Environ Microbiol 2019; 85:AEM.00486-19. [PMID: 31076436 PMCID: PMC6606889 DOI: 10.1128/aem.00486-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH. Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions. IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.
Collapse
|
9
|
den Besten HM, Amézquita A, Bover-Cid S, Dagnas S, Ellouze M, Guillou S, Nychas G, O'Mahony C, Pérez-Rodriguez F, Membré JM. Next generation of microbiological risk assessment: Potential of omics data for exposure assessment. Int J Food Microbiol 2018; 287:18-27. [DOI: 10.1016/j.ijfoodmicro.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
|
10
|
Enhancing the Adaptability of the Deep-Sea Bacterium Shewanella piezotolerans WP3 to High Pressure and Low Temperature by Experimental Evolution under H 2O 2 Stress. Appl Environ Microbiol 2018; 84:AEM.02342-17. [PMID: 29269502 DOI: 10.1128/aem.02342-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/10/2017] [Indexed: 11/20/2022] Open
Abstract
Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H2O2 stress. Notably, OE100 exhibited better tolerance not only to H2O2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT.IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium Shewanella piezotolerans WP3 as a model, we proved that enhancement of the adaptability of WP3 to HHP and LT can benefit from its antioxidant defense mechanism, which provided useful insight into the ecological roles of antioxidant genes in a benthic microorganism and contributed to an improved understanding of microbial adaptation strategies in deep-sea environments.
Collapse
|
11
|
Desriac N, Postollec F, Coroller L, Pavan S, Combrisson J, Hallier-Soulier S, Sohier D. Trustworthy Identification of Resistance Biomarkers of Bacillus weihenstephanensis: Workflow of the Quality Assurance Procedure. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1058-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Sohier D, Riou A, Postollec F. A typical day working in a laboratory in 2050: are microbiologists becoming chemists and serene workers? Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
|
14
|
Sakil Munna M, Tahera J, Mohibul Hassan Afrad M, Nur IT, Noor R. Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 2015; 8:637. [PMID: 26526722 PMCID: PMC4630936 DOI: 10.1186/s13104-015-1631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background The bacterial stressed state upon temperature raise has widely been observed especially in Escherichia coli cells. The current study extended such physiological investigation on Bacillus spp. SUBB01 under aeration at 100 rpm on different culture media along with the high temperature exposure at 48, 50, 52, 53 and 54 °C. Bacterial growth was determined through the enumeration of the viable and culturable cells; i.e., cells capable of producing the colony forming units on Luria–Bertani and nutrient agar plates up to 24 h. Microscopic experiments were conducted to scrutinize the successive physiological changes. Suppression of bacterial growth due to the elevated heat was further confirmed by the observation of non-viability through spot tests. Results As expected, a quick drop in both cell turbidity and colony forming units (~104) along with spores were observed after 12–24 h of incubation period, when cells were grown at 54 °C in both Luria–Bertani and nutrient broth and agar. The critical temperature (the temperature above which it is no longer possible to survive) of Bacillus spp. SUBB01 was estimated to be 53 °C. Furthermore, a positive impact was observed on the inhibited E. coli SUBE01 growth at 45 and 47 °C, upon the supplementation of the extracellular fractions of Bacillus species into the growing culture. Conclusions Overall the present analysis revealed the conversion of the culturable cells into the viable and nonculturable (VBNC) state as a result of heat shock response in Bacillus spp. SUBB01 and the cellular adaptation at extremely high temperature.
Collapse
Affiliation(s)
- Md Sakil Munna
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Jannatun Tahera
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Md Mohibul Hassan Afrad
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Ifra Tun Nur
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Rashed Noor
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| |
Collapse
|
15
|
da Fonseca FSA, Angolini CFF, Arruda MAZ, Junior CAL, Santos CA, Saraiva AM, Pilau E, Souza AP, Laborda PR, de Oliveira PFL, de Oliveira VM, Reis FDAM, Marsaioli AJ. Identification of oxidoreductases from the petroleum Bacillus safensis strain. ACTA ACUST UNITED AC 2015; 8:152-159. [PMID: 28352585 PMCID: PMC4980753 DOI: 10.1016/j.btre.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 10/31/2022]
Abstract
A gram-positive bacterium, denominated CFA-06, was isolated from Brazilian petroleum in the Campos Basin and is responsible for the degradation of aromatic compounds and petroleum aromatic fractions. The CFA-06 strain was identified as Bacillus safensis using the 16S rRNA and gyrase B sequence. Enzymatic assays revealed the presence of two oxidoreductases: a catalase and a new oxidoreductase. The oxidoreductases were enzymatically digested and analyzed via ESI-LTQ-Orbitrap mass spectrometry. The mass data revealed a novel oxidoreductase (named BsPMO) containing 224 amino acids and 89% homology with a hypothetic protein from B. safensis (CFA-06) and a catalase (named BsCat) with 491 amino acids and 60% similarity with the catalase from Bacillus pumilus (SAFR-032). The new protein BsPMO contains iron atom(s) and shows catalytic activity toward a monooxygenase fluorogenic probe in the presence of cofactors (NADH, NADPH and NAD). This study enhances our knowledge of the biodegradation process of petroleum by B. safensis.
Collapse
Affiliation(s)
- Francine S A da Fonseca
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil; Institute of Agricultural Sciences, Federal University of Minas Gerais, 39404-547 Minas Gerais, Brazil
| | - Célio F F Angolini
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Marco A Zezzi Arruda
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Cícero A L Junior
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Clelton A Santos
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Antonio M Saraiva
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil; National Institute of Metrology, Quality and Technology - INMETRO, Xerém, Rio de Janeiro, Brazil
| | - Eduardo Pilau
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Prianda R Laborda
- Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 São Paulo, Brazil
| | - Patrícia F L de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, CP 6171, CEP 13081-970, Campinas, SP, Brazil
| | - Valéria M de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, CP 6171, CEP 13081-970, Campinas, SP, Brazil
| | | | - Anita J Marsaioli
- Chemistry Institute, University of Campinas, P.B 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Desriac N, Coroller L, Jannic F, Postollec F, Sohier D. mRNA biomarkers selection based on Partial Least Square algorithm in order to further predict Bacillus weihenstephanensis acid resistance. Food Microbiol 2015; 45:111-8. [DOI: 10.1016/j.fm.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/26/2022]
|
17
|
Sooch BS, Kauldhar BS, Puri M. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol Adv 2014; 32:1429-47. [DOI: 10.1016/j.biotechadv.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
|
18
|
Dahlsten E, Lindström M, Korkeala H. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Res Microbiol 2014; 166:344-52. [PMID: 25303833 DOI: 10.1016/j.resmic.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/28/2022]
Abstract
Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions.
Collapse
Affiliation(s)
- Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
19
|
Dahlsten E, Isokallio M, Somervuo P, Lindström M, Korkeala H. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response. PLoS One 2014; 9:e89958. [PMID: 24587151 PMCID: PMC3933689 DOI: 10.1371/journal.pone.0089958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.
Collapse
Affiliation(s)
- Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Marita Isokallio
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Desriac N, Postollec F, Durand D, Leguerinel I, Sohier D, Coroller L. Sensitivity of Bacillus weihenstephanensis to acidic changes of the medium is not dependant on physiological state. Food Microbiol 2013; 36:440-6. [DOI: 10.1016/j.fm.2013.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
|
21
|
Desriac N, Broussolle V, Postollec F, Mathot AG, Sohier D, Coroller L, Leguerinel I. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers. Front Microbiol 2013; 4:284. [PMID: 24106490 PMCID: PMC3788345 DOI: 10.3389/fmicb.2013.00284] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/03/2013] [Indexed: 01/20/2023] Open
Abstract
Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain.
Collapse
Affiliation(s)
- Noémie Desriac
- ADRIA Développement, UMT 08.3 PHYSI’Opt, QuimperFrance
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | - Véronique Broussolle
- UMR408, Sécurité et Qualité des Produits d’Origine Végétale, Institut National de la Recherche AgronomiqueAvignon, France
- UMR408, Sécurité et Qualité des Produits d’Origine Végétale, Université d’Avignon et des Pays de VaucluseAvignon, France
| | | | - Anne-Gabrielle Mathot
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | | | - Louis Coroller
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | - Ivan Leguerinel
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| |
Collapse
|
22
|
Desriac N, Postollec F, Coroller L, Sohier D, Abee T, den Besten H. Prediction of Bacillus weihenstephanensis acid resistance: The use of gene expression patterns to select potential biomarkers. Int J Food Microbiol 2013; 167:80-6. [DOI: 10.1016/j.ijfoodmicro.2013.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
|
23
|
Chu-Ky S, Bui TK, Nguyen TL, Ho PH. Acid adaptation to improve viability and X-prolyl dipeptidyl aminopeptidase activity of the probiotic bacteriumLactobacillus fermentumHA6 exposed to simulated gastrointestinal tract conditions. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Son Chu-Ky
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung Hanoi 10000 Vietnam
| | - Thi-Khanh Bui
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung Hanoi 10000 Vietnam
| | - Tien-Long Nguyen
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung Hanoi 10000 Vietnam
| | - Phu-Ha Ho
- Department of Food Technology; School of Biotechnology and Food Technology; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung Hanoi 10000 Vietnam
| |
Collapse
|
24
|
Wang W, Ji X, Yuan C, Dai F, Zhu J, Sun M. A method for molecular analysis of catalase gene diversity in seawater. Indian J Microbiol 2013; 53:477-81. [PMID: 24426153 DOI: 10.1007/s12088-013-0404-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
Catalase plays an important role in the metabolism of marine bacteria and has potential impact on the marine environment. Four PCR primers were designed to amplify the catalase gene fragments in marine bacteria by applying metagenomic DNA from Yellow Sea surface water as the template. Of the four reproducible target PCR products, the longest one with 900 bp were chosen for catalase gene library construction by the T-vector and the white Escherichia coli colonies in the library was screened through restriction-digesting the reamplified insert fragments by the selected restriction endonuclease MboI, and then the bands of the resulting products were displayed in the agarose gel by electrophoresis. The unique restriction fragment length polymorphism (RFLP) pattern was selected and the corresponding catalase gene fragments were sequenced, which verified that every unique RFLP pattern represented one type of catalase. This PCR-RFLP method above was established to investigate the bacterial catalase diversity in seawater.
Collapse
Affiliation(s)
- Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China
| | - Xiaofeng Ji
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China
| | - Cui Yuan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China
| | - Fangqun Dai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China
| | - Jiancheng Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China
| | - Mi Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 China ; Marine Products Resource and Enzyme Engineering Laboratory, Yellow Sea Fisheries Research Institute, 106 Nanjing Road, Qingdao, 266071 Shandong China
| |
Collapse
|