1
|
Lin J, Xiao Y, Liu H, Gao D, Duan Y, Zhu X. Combined transcriptomic and pangenomic analyses guide metabolic amelioration to enhance tiancimycins production. Appl Microbiol Biotechnol 2024; 108:18. [PMID: 38170317 DOI: 10.1007/s00253-023-12937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Exploration of high-yield mechanism is important for further titer improvement of valuable antibiotics, but how to achieve this goal is challenging. Tiancimycins (TNMs) are anthraquinone-fused enediynes with promising drug development potentials, but their prospective applications are limited by low titers. This work aimed to explore the intrinsic high-yield mechanism in previously obtained TNMs high-producing strain Streptomyces sp. CB03234-S for the further titer amelioration of TNMs. First, the typical ribosomal RpsL(K43N) mutation in CB03234-S was validated to be merely responsible for the streptomycin resistance but not the titer improvement of TNMs. Subsequently, the combined transcriptomic, pan-genomic and KEGG analyses revealed that the significant changes in the carbon and amino acid metabolisms could reinforce the metabolic fluxes of key CoA precursors, and thus prompted the overproduction of TNMs in CB03234-S. Moreover, fatty acid metabolism was considered to exert adverse effects on the biosynthesis of TNMs by shunting and reducing the accumulation of CoA precursors. Therefore, different combinations of relevant genes were respectively overexpressed in CB03234-S to strengthen fatty acid degradation. The resulting mutants all showed the enhanced production of TNMs. Among them, the overexpression of fadD, a key gene responsible for the first step of fatty acid degradation, achieved the highest 21.7 ± 1.1 mg/L TNMs with a 63.2% titer improvement. Our studies suggested that comprehensive bioinformatic analyses are effective to explore metabolic changes and guide rational metabolic reconstitution for further titer improvement of target products. KEY POINTS: • Comprehensive bioinformatic analyses effectively reveal primary metabolic changes. • Primary metabolic changes cause precursor enrichment to enhance TNMs production. • Strengthening of fatty acid degradation further improves the titer of TNMs.
Collapse
Affiliation(s)
- Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Yu Xiao
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Die Gao
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Yan X, Dong Y, Gu Y, Cui H. Effect of Precursors and Their Regulators on the Biosynthesis of Antibiotics in Actinomycetes. Molecules 2024; 29:1132. [PMID: 38474644 DOI: 10.3390/molecules29051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.
Collapse
Affiliation(s)
- Xu Yan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yao Dong
- College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yawen Gu
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hao Cui
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
4
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2023. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
5
|
Li JY, Liang JY, Liu ZY, Yi YZ, Zhao J, Huang ZY, Chen J. Multicopy Chromosome Integration and Deletion of Negative Global Regulators Significantly Increased the Heterologous Production of Aborycin in Streptomyces coelicolor. Mar Drugs 2023; 21:534. [PMID: 37888469 PMCID: PMC10608281 DOI: 10.3390/md21100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Aborycin is a type I lasso peptide with a stable interlocked structure, offering a favorable framework for drug development. The aborycin biosynthetic gene cluster gul from marine sponge-associated Streptomyces sp. HNS054 was cloned and integrated into the chromosome of S. coelicolor hosts with different copies. The three-copy gul-integration strain S. coelicolor M1346::3gul showed superior production compared to the one-copy or two-copy gul-integration strains, and the total titer reached approximately 10.4 mg/L, i.e., 2.1 times that of the native strain. Then, five regulatory genes, phoU (SCO4228), wblA (SCO3579), SCO1712, orrA (SCO3008) and gntR (SCO1678), which reportedly have negative effects on secondary metabolism, were further knocked out from the M1346::3gul genome by CRISPR/Cas9 technology. While the ΔSCO1712 mutant showed a significant decrease (4.6 mg/L) and the ΔphoU mutant showed no significant improvement (12.1 mg/L) in aborycin production, the ΔwblA, ΔorrA and ΔgntR mutations significantly improved the aborycin titers to approximately 23.6 mg/L, 56.3 mg/L and 48.2 mg/L, respectively, which were among the highest heterologous yields for lasso peptides in both Escherichia coli systems and Streptomyces systems. Thus, this study provides important clues for future studies on enhancing antibiotic production in Streptomyces systems.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jun-Yu Liang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Zhao-Yuan Liu
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Yue-Zhao Yi
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jing Zhao
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| | - Zhi-Yong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jun Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Nah HJ, Park J, Choi S, Kim ES. WblA, a global regulator of antibiotic biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2021; 48:6127318. [PMID: 33928363 PMCID: PMC9113171 DOI: 10.1093/jimb/kuab007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Streptomyces species are soil-dwelling bacteria that produce vast numbers of pharmaceutically valuable secondary metabolites (SMs), such as antibiotics, immunosuppressants, antiviral, and anticancer drugs. On the other hand, the biosynthesis of most SMs remains very low due to tightly controlled regulatory networks. Both global and pathway-specific regulators are involved in the regulation of a specific SM biosynthesis in various Streptomyces species. Over the past few decades, many of these regulators have been identified and new ones are still being discovered. Among them, a global regulator of SM biosynthesis named WblA was identified in several Streptomyces species. The identification and understanding of the WblAs have greatly contributed to increasing the productivity of several Streptomyces SMs. This review summarizes the characteristics and applications on WblAs reported to date, which were found in various Streptomyces species and other actinobacteria.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jihee Park
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Lu T, Zhu Y, Zhang P, Sheng D, Cao G, Pang X. SCO5351 is a pleiotropic factor that impacts secondary metabolism and morphological development in Streptomyces coelicolor. FEMS Microbiol Lett 2018; 365:5040222. [DOI: 10.1093/femsle/fny150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ting Lu
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yanping Zhu
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Peipei Zhang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Duohong Sheng
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
8
|
Yan L, Tang Q, Guan Z, Pei K, Zou T, He J. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1843-1851. [PMID: 29852200 DOI: 10.1016/j.bbagen.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/18/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Biotin is an essential cofactor in living organisms. The TetR family transcriptional regulator (TFTR) BioQ is the main regulator of biotin synthesis in Mycobacterium smegmatis. BioQ represses the expression of its target genes by binding to a conserved palindromic DNA sequence (the BioQ operator). However, the mechanism by which BioQ recognizes this DNA element has not yet been fully elucidated. METHODS/RESULTS We solved the crystal structures of the BioQ homodimer in its apo-form and in complex with its specific operator at 2.26 Å and 2.69 Å resolution, respectively. BioQ inserts the N-terminal recognition helix of each protomer into the corresponding major grooves of its operator and stabilizes the formation of the complex via electrostatic interactions and hydrogen bonding to induce conformational changes in both the DNA and BioQ. The DNA interface of BioQ is rich in positively charged residues, which help BioQ stabilize DNA binding. We elucidated the structural basis of DNA recognition by BioQ for the first time and identified the amino acid residues responsible for DNA binding via further site-directed mutagenesis. GENERAL SIGNIFICANCE Our findings clearly elucidate the mechanism by which BioQ recognizes its operator in the biotin synthesis pathway and reveal the unique structural characteristics of BioQ that are distinct from other TFTR members.
Collapse
Affiliation(s)
- Ling Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zeyuan Guan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai Pei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tingting Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
9
|
Production of specialized metabolites by Streptomyces coelicolor A3(2). ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:217-66. [PMID: 25131404 DOI: 10.1016/b978-0-12-800259-9.00006-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
Collapse
|
10
|
Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 2014; 4:2894. [PMID: 24305602 PMCID: PMC3969335 DOI: 10.1038/ncomms3894] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shao Z, Zhao H. Manipulating natural product biosynthetic pathways via DNA assembler. ACTA ACUST UNITED AC 2014; 6:65-100. [PMID: 24903884 DOI: 10.1002/9780470559277.ch130191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products.
Collapse
Affiliation(s)
- Zengyi Shao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
12
|
Direct proteomic mapping of Streptomyces roseosporus NRRL 11379 with precursor and insights into daptomycin biosynthesis. J Biosci Bioeng 2014; 117:591-7. [DOI: 10.1016/j.jbiosc.2013.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/15/2013] [Accepted: 10/26/2013] [Indexed: 01/12/2023]
|
13
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
14
|
Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2013; 2:662-9. [PMID: 23968564 DOI: 10.1021/sb400058n] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Natural products (secondary metabolites) are a rich source of compounds with important biological activities. Eliciting pathway expression is always challenging but extremely important in natural product discovery because an individual pathway is tightly controlled through a unique regulation mechanism and hence often remains silent under the routine culturing conditions. To overcome the drawbacks of the traditional approaches that lack general applicability, we developed a simple synthetic biology approach that decouples pathway expression from complex native regulations. Briefly, the entire silent biosynthetic pathway is refactored using a plug-and-play scaffold and a set of heterologous promoters that are functional in a heterologous host under the target culturing condition. Using this strategy, we successfully awakened the silent spectinabilin pathway from Streptomyces orinoci. This strategy bypasses the traditional laborious processes to elicit pathway expression and represents a new platform for discovering novel natural products.
Collapse
Affiliation(s)
- Zengyi Shao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Guodong Rao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Chun Li
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Zhanar Abil
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Yunzi Luo
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Huimin Zhao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
15
|
Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 2013; 32:255-68. [PMID: 24189093 DOI: 10.1016/j.biotechadv.2013.10.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/20/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species.
Collapse
Affiliation(s)
- Kyu-Sang Hwang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hyun Uk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Bernhard Ø Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
16
|
Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 2013; 79:4159-63. [PMID: 23603676 DOI: 10.1128/aem.00546-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The upstream region of antibiotic downregulatory wblA in Streptomyces coelicolor was found to contain AdpA binding motifs. A key morphological regulator, AdpA was shown to specifically bind these motifs by electrophoretic mobility shift assay. An adpA disruption mutant exhibited increased wblA transcription, suggesting that AdpA negatively regulates wblA transcription in S. coelicolor.
Collapse
|
17
|
Identification and biotechnological application of novel regulatory genes involved in Streptomyces polyketide overproduction through reverse engineering strategy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:549737. [PMID: 23555090 PMCID: PMC3603650 DOI: 10.1155/2013/549737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/15/2012] [Accepted: 01/05/2013] [Indexed: 01/24/2023]
Abstract
Polyketide belongs to a family of abundant natural products typically produced by the filamentous soil bacteria Streptomyces. Similar to the biosynthesis of most secondary metabolites produced in the Streptomyces species, polyketide compounds are synthesized through tight regulatory networks in the cell, and thus extremely low levels of polyketides are typically observed in wild-type strains. Although many Streptomyces polyketides and their derivatives have potential to be used as clinically important pharmaceutical drugs, traditional strain improvement strategies such as random recursive mutagenesis have long been practiced with little understanding of the molecular basis underlying enhanced polyketide production. Recently, identifying, understanding, and applying a novel polyketide regulatory system identified from various Omics approaches, has become an important tool for rational Streptomyces strain improvement. In this paper, DNA microarray-driven reverse engineering efforts for improving titers of polyketides are briefly summarized, primarily focusing on our recent results of identification and application of novel global regulatory genes such as wblA, SCO1712, and SCO5426 in Streptomyces species. Sequential targeted gene manipulation involved in polyketide biosynthetic reguation synergistically provided an efficient and rational strategy for Streptomyces strain improvement. Moreover, the engineered regulation-optimized Streptomyces mutant strain was further used as a surrogate host for heterologous expression of polyketide pathway.
Collapse
|
18
|
Identification of a cyclosporine-specific P450 hydroxylase gene through targeted cytochrome P450 complement (CYPome) disruption in Sebekia benihana. Appl Environ Microbiol 2013; 79:2253-62. [PMID: 23354713 DOI: 10.1128/aem.03722-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously proposed that regio-specific hydroxylation of an immunosuppressive cyclosporine (CsA) at the 4th N-methyl leucine is mediated by cytochrome P450 hydroxylase (CYP) in the rare actinomycete Sebekia benihana. This modification is thought to be the reason for the hair growth-promoting side effect without the immunosuppressive activity of CsA. Through S. benihana genome sequencing and in silico analysis, we identified the complete cytochrome P450 complement (CYPome) of S. benihana, including 21 CYPs and their electron transfer partners, consisting of 7 ferredoxins (FDs) and 4 ferredoxin reductases (FDRs). Using Escherichia coli conjugation-based S. benihana CYPome-targeted disruption, all of the identified CYP, FD, and FDR genes in S. benihana were individually inactivated. Among the 32 S. benihana exconjugant mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb21, failed to exhibit CsA hydroxylation activity. The hydroxylation was restored by CYP-sb21 gene complementation. Since all S. benihana FD and FDR disruption mutants maintained CsA hydroxylation activity, it can be concluded that CYP-sb21, a new member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific CsA hydroxylation process in S. benihana. Moreover, expression of an extra copy of the CYP-sb21 gene increased CsA hydroxylation in wild-type S. benihana and an NADPH-enriched Streptomyces coelicolor mutant, by 2-fold and 1.5-fold, respectively. These results show for the first time that regio-specific hydroxylation of CsA is carried out by a specific P450 hydroxylase present in S. benihana, and they set the stage for the biotechnological application of regio-specific CsA hydroxylation through heterologous CYP-sb21 expression.
Collapse
|
19
|
Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 2012; 94:637-49. [PMID: 22406858 DOI: 10.1007/s00253-011-3773-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/18/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
Abstract
In silico metabolic network models are valuable tools for strain improvement with desired properties. In this work, based on the comparisons of each pathway flux under two different objective functions for the reconstructed metabolic network of Streptomyces roseosporus, three potential targets of zwf2 (code for glucose-6-phosphate hydrogenase), dptI (code for α-ketoglutarate methyltransferase), and dptJ (code for tryptophan oxygenase) were identified and selected for the genetic modifications. Overexpression of zwf2, dptI, and dptJ genes increased the daptomycin concentration up to 473.2, 452.5, and 489.1 mg/L, respectively. Furthermore, co-overexpression of three genes in series resulted in a 34.4% higher daptomycin concentration compared with the parental strain, which ascribed to the synergistic effect of the enzymes responsible for daptomycin biosynthesis. Finally, the engineered strain enhanced the yield of daptomycin up to 581.5 mg/L in the fed-batch culture, which was approximately 43.2% higher than that of the parental strain. These results demonstrated that the metabolic network based on in silico prediction would be accurate, reasonable, and practical for target gene identification and strain improvement.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Lee HN, Kim HJ, Kim P, Lee HS, Kim ES. Minimal polyketide pathway expression in an actinorhodin cluster-deleted and regulation-stimulated Streptomyces coelicolor. J Ind Microbiol Biotechnol 2012; 39:805-11. [PMID: 22252445 DOI: 10.1007/s10295-011-1083-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/31/2011] [Indexed: 12/26/2022]
Abstract
Along with traditional random mutagenesis-driven strain improvement, cloning and heterologous expression of Streptomyces secondary metabolite gene clusters have become an attractive complementary approach to increase its production titer, of which regulation is typically under tight control via complex multiple regulatory networks present in a metabolite low-producing wild-type strain. In this study, we generated a polyketide non-producing strain by deleting the entire actinorhodin cluster from the chromosome of a previously generated S. coelicolor mutant strain, which was shown to stimulate actinorhodin biosynthesis through deletion of two antibiotic downregulators as well as a polyketide precursor flux downregulator (Kim et al. in Appl Environ Microbiol 77:1872-1877, 2011). Using this engineered S. coelicolor mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. Aloesaponarin II production was detected only in the presence of a pathway-specific regulatory gene, actII-ORF4, and its production level was the highest in the actinorhodin cluster-deleted and downregulator-deleted mutant strain, implying that this engineered polyketide pathway-free and regulation-optimized S. coelicolor mutant strain could be used as a general surrogate host for efficient expression of indigenous or foreign polyketide pathways derived from diverse actinomycetes in nature.
Collapse
Affiliation(s)
- Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | | | | | | | | |
Collapse
|
21
|
Zhou Z, Gu J, Du YL, Li YQ, Wang Y. The -omics Era- Toward a Systems-Level Understanding of Streptomyces. Curr Genomics 2011; 12:404-16. [PMID: 22379394 PMCID: PMC3178909 DOI: 10.2174/138920211797248556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 11/22/2022] Open
Abstract
Streptomyces is a group of soil bacteria of medicinal, economic, ecological, and industrial importance. It is renowned for its complex biology in gene regulation, antibiotic production, morphological differentiation, and stress response. In this review, we provide an overview of the recent advances in Streptomyces biology inspired by -omics based high throughput technologies. In this post-genomic era, vast amounts of data have been integrated to provide significant new insights into the fundamental mechanisms of system control and regulation dynamics of Streptomyces.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Yi-Ling Du
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
22
|
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2011; 157:1312-1328. [PMID: 21330440 DOI: 10.1099/mic.0.047555-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Streptomyces coelicolor A3(2) sporulation gene whiB is the paradigm of a family of genes (wbl, whiB-like) that are confined to actinobacteria. The chromosome of S. coelicolor contains 11 wbl genes, among which five are conserved in many actinobacteria: whiB itself; whiD, a sporulation gene; wblC, which is required for multi-drug resistance; and wblA and wblE, whose roles had previously been little studied. We succeeded in disrupting wblA and the six non-conserved genes, but could not disrupt wblE. Although mutations in the six non-conserved wbl genes (including some multiple wbl mutants) produced no readily detectable phenotype, mutations in wblA had novel and complex effects. The aerial mycelium of wblA mutants was coloured red, because of the ectopic presence of pigmented antibiotics (actinorhodin and undecylprodigiosin) normally confined to lower parts of wild-type colonies, and consisted almost entirely of non-sporulating, thin, straight filaments, often bundled together in a fibrillar matrix. Rare spore chains were also formed, which exhibited wild-type properties but were genetically still wblA mutants. A wblA mutant achieved higher biomass than the wild-type. Microarray analysis indicated major transcriptional changes in a wblA mutant: using a relatively stringent cut-off, 183 genes were overexpressed, including genes for assimilative primary metabolism and actinorhodin biosynthesis, and 103 were underexpressed, including genes associated with stages of aerial hyphal growth. We suggest that WblA is important in both the slow-down of biomass accumulation and the change from aerial hyphal initial cells to the subapical stem and apical compartments that precede sporulation; and that the mutant aerial mycelium consists of recapitulated defective aerial hyphal initial cells.
Collapse
Affiliation(s)
- Kay Fowler-Goldsworthy
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Sébastien Mouz
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|