1
|
Zhao Y, Wang Y, Xia C, Li X, Ye X, Fan Q, Huang Y, Li Z, Zhu C, Cui Z. Whole-Genome Sequencing of Corallococcus sp. Strain EGB Reveals the Genetic Determinants Linking Taxonomy and Predatory Behavior. Genes (Basel) 2021; 12:genes12091421. [PMID: 34573403 PMCID: PMC8466578 DOI: 10.3390/genes12091421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Corallococcus sp. strain EGB is a Gram-negative myxobacteria isolated from saline soil, and has considerable potential for the biocontrol of phytopathogenic fungi. However, the detailed mechanisms related to development and predatory behavior are unclear. To obtain a comprehensive overview of genetic features, the genome of strain EGB was sequenced, annotated, and compared with 10 other Corallococcus species. The strain EGB genome was assembled as a single circular chromosome of 9.4 Mb with 7916 coding genes. Phylogenomics analysis showed that strain EGB was most closely related to Corallococcus interemptor AB047A, and it was inferred to be a novel species within the Corallococcus genus. Comparative genomic analysis revealed that the pan-genome of Corallococcus genus was large and open. Only a small proportion of genes were specific to strain EGB, and most of them were annotated as hypothetical proteins. Subsequent analyses showed that strain EGB produced abundant extracellular enzymes such as chitinases and β-(1,3)-glucanases, and proteases to degrade the cell-wall components of phytopathogenic fungi. In addition, 35 biosynthetic gene clusters potentially coding for antimicrobial compounds were identified in the strain EGB, and the majority of them were present in the dispensable pan-genome with unexplored metabolites. Other genes related to secretion and regulation were also explored for strain EGB. This study opens new perspectives in the greater understanding of the predatory behavior of strain EGB, and facilitates a potential application in the biocontrol of fungal plant diseases in the future.
Collapse
Affiliation(s)
- Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, Cárdenas A, Huggett MJ, Kerwin AH, Kuek F, Medina M, Meyer JL, Müller M, Pollock FJ, Rappé MS, Sere M, Sharp KH, Voolstra CR, Zaccardi N, Ziegler M, Peixoto R. Insights into the Cultured Bacterial Fraction of Corals. mSystems 2021; 6:e0124920. [PMID: 34156291 PMCID: PMC8269258 DOI: 10.1128/msystems.01249-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.
Collapse
Affiliation(s)
- Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Helena Villela
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
- Department of Energy, Joint Genome Institute and Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Stefano Romano
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Megan J. Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | | | - Felicity Kuek
- Australian Institute of Marine Science, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julie L. Meyer
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia
| | - F. Joseph Pollock
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Hawaii and Palmyra Programs, The Nature Conservancy, Honolulu, Hawaii, USA
| | - Michael S. Rappé
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - Mathieu Sere
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Koty H. Sharp
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | | | - Nathan Zaccardi
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Raquel Peixoto
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Wang M, Sun ZZ, Xie BB. Comparative Genomic Insights Into the Taxonomic Classification, Diversity, and Secondary Metabolic Potentials of Kitasatospora, a Genus Closely Related to Streptomyces. Front Microbiol 2021; 12:683814. [PMID: 34194415 PMCID: PMC8236941 DOI: 10.3389/fmicb.2021.683814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
While the genus Streptomyces (family Streptomycetaceae) has been studied as a model for bacterial secondary metabolism and genetics, its close relatives have been less studied. The genus Kitasatospora is the second largest genus in the family Streptomycetaceae. However, its taxonomic position within the family remains under debate and the secondary metabolic potential remains largely unclear. Here, we performed systematic comparative genomic and phylogenomic analyses of Kitasatospora. Firstly, the three genera within the family Streptomycetaceae (Kitasatospora, Streptomyces, and Streptacidiphilus) showed common genomic features, including high G + C contents, high secondary metabolic potentials, and high recombination frequencies. Secondly, phylogenomic and comparative genomic analyses revealed phylogenetic distinctions and genome content differences among these three genera, supporting Kitasatospora as a separate genus within the family. Lastly, the pan-genome analysis revealed extensive genetic diversity within the genus Kitasatospora, while functional annotation and genome content comparison suggested genomic differentiation among lineages. This study provided new insights into genomic characteristics of the genus Kitasatospora, and also uncovered its previously underestimated and complex secondary metabolism.
Collapse
Affiliation(s)
- Yisong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Genomic Analysis of a Newly Isolated Acidithiobacillus ferridurans JAGS Strain Reveals Its Adaptation to Acid Mine Drainage. MINERALS 2021. [DOI: 10.3390/min11010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acidithiobacillus ferridurans JAGS is a newly isolated acidophile from an acid mine drainage (AMD). The genome of isolate JAGS was sequenced and compared with eight other published genomes of Acidithiobacillus. The pairwise mutation distance (Mash) and average nucleotide identity (ANI) revealed that isolate JAGS had a close evolutionary relationship with A. ferridurans JCM18981, but whole-genome alignment showed that it had higher similarity in genomic structure with A. ferrooxidans species. Pan-genome analysis revealed that nine genomes were comprised of 4601 protein coding sequences, of which 43% were core genes (1982) and 23% were unique genes (1064). A. ferridurans species had more unique genes (205–246) than A. ferrooxidans species (21–234). Functional gene categorizations showed that A. ferridurans strains had a higher portion of genes involved in energy production and conversion while A. ferrooxidans had more for inorganic ion transport and metabolism. A high abundance of kdp, mer and ars genes, as well as mobile genetic elements, was found in isolate JAGS, which might contribute to its resistance to harsh environments. These findings expand our understanding of the evolutionary adaptation of Acidithiobacillus and indicate that A. ferridurans JAGS is a promising candidate for biomining and AMD biotreatment applications.
Collapse
|