1
|
Coppinger M, Yang L, Popham DL, Ruby E, Stabb EV. Transient infection of Euprymna scolopes with an engineered D-alanine auxotroph of Vibrio fischeri. Appl Environ Microbiol 2024; 90:e0129824. [PMID: 39235243 PMCID: PMC11497789 DOI: 10.1128/aem.01298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024] Open
Abstract
The symbiosis between Vibrio fischeri and the Hawaiian bobtail squid, Euprymna scolopes, is a tractable and well-studied model of bacteria-animal mutualism. Here, we developed a method to transiently colonize E. scolopes using D-alanine (D-ala) auxotrophy of the symbiont, controlling the persistence of viable infection by supplying or withholding D-ala. We generated alanine racemase (alr) mutants of V. fischeri that lack avenues for mutational suppression of auxotrophy or reversion to prototrophy. Surprisingly, an ∆alr mutant did not require D-ala to grow in a minimal medium, a phenomenon requiring metC, which encodes cystathionine β-lyase. Likewise, overexpression of metC suppressed D-ala auxotrophy in a rich medium. To block potential mechanisms of suppression, we combined the ∆alr mutation with deletions of metC and/or bsrF, which encodes a broad-spectrum racemase and investigated the suppression rates of four D-ala auxotrophic strains. We then focused on ∆alr ∆bsrF mutant MC13, which has a suppression rate of <10-9. When D-ala was removed from a growing culture of MC13, cells rounded and lysed within 40 minutes. Transient colonization of E. scolopes was achieved by inoculating squid in seawater containing MC13 and D-ala, and then transferring the squid into water lacking D-ala, which resulted in loss of viable symbionts within hours. Interestingly, the symbionts within crypt 3 persisted longer than those of crypt 1, suggesting a difference in bacterial growth rate in distinct crypt environments. Our study highlights a new approach for inducing transient colonization and provides insight into the biogeography of the E. scolopes light organ.IMPORTANCEThe importance of this study is multi-faceted, providing a valuable methodological tool and insight into the biology of the symbiosis between Vibrio fischeri and Euprymna scolopes. First, the study sheds light on the critical role of D-ala for bacterial growth, and the underpinnings of D-ala synthesis. Our observations that metC obviates the need for D-ala supplementation of an alr mutant in minimal medium and that MetC-dependent growth correlates with D-ala in peptidoglycan, corroborate and extend previous findings in Escherichia coli regarding a role of MetC in D-ala production. Second, our isolation of robust D-ala auxotrophs led us to a novel method for studying the squid-Vibrio symbiosis, allowing for transient colonization without the use of antibiotics, and revealed intriguing differences in symbiont growth parameters in distinct light organ crypts. This work and the methodology developed will contribute to our understanding of the persistence and dynamics of V. fischeri within its host.
Collapse
Affiliation(s)
- Macey Coppinger
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liu Yang
- Division of Biosphere Sciences and Engineering, California Institute of Technology, Pasadena, California, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Edward Ruby
- Division of Biosphere Sciences and Engineering, California Institute of Technology, Pasadena, California, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Fidopiastis PM, Childs C, Esin JJ, Stellern J, Darin A, Lorenzo A, Mariscal VT, Lorenz J, Gopan V, McAnulty S, Visick KL. Corrected and republished from: " Vibrio fischeri Possesses Xds and Dns Nucleases That Differentially Influence Phosphate Scavenging, Aggregation, Competence, and Symbiotic Colonization of Squid". Appl Environ Microbiol 2024; 90:e0032824. [PMID: 38712952 PMCID: PMC11218612 DOI: 10.1128/aem.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed a complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates upon prolonged incubation. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research.IMPORTANCEFrom soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts the construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well-documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between Vibrio fischeri and its squid host Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.
Collapse
Affiliation(s)
- Pat M. Fidopiastis
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Chaz Childs
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Jeremy J. Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jordan Stellern
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Anna Darin
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Andrea Lorenzo
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Vanessa T. Mariscal
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Jason Lorenz
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Vinay Gopan
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Sarah McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Coppinger MN, Laramore K, Popham DL, Stabb EV. A prototrophic suppressor of a Vibrio fischeri D-glutamate auxotroph reveals a member of the periplasmic broad-spectrum racemase family (BsrF). J Bacteriol 2024; 206:e0033323. [PMID: 38411059 PMCID: PMC10955857 DOI: 10.1128/jb.00333-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.
Collapse
Affiliation(s)
- Macey N. Coppinger
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| | - Kathrin Laramore
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
4
|
Fidopiastis PM, Childs C, Esin JJ, Stellern J, Darin A, Lorenzo A, Mariscal VT, Lorenz J, Gopan V, McAnulty S, Visick KL. Vibrio fischeri Possesses Xds and Dns Nucleases That Differentially Influence Phosphate Scavenging, Aggregation, Competence, and Symbiotic Colonization of Squid. Appl Environ Microbiol 2022; 88:e0163522. [PMID: 36342139 PMCID: PMC9680621 DOI: 10.1128/aem.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates after 72 h. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research. IMPORTANCE From soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between V. fischeri and its squid host, Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.
Collapse
Affiliation(s)
| | - Chaz Childs
- California State University, San Luis Obispo, California, USA
| | | | - Jordan Stellern
- California State University, San Luis Obispo, California, USA
| | - Anna Darin
- California State University, San Luis Obispo, California, USA
| | - Andrea Lorenzo
- California State University, San Luis Obispo, California, USA
| | | | - Jason Lorenz
- California State University, San Luis Obispo, California, USA
| | - Vinay Gopan
- California State University, San Luis Obispo, California, USA
| | | | | |
Collapse
|
5
|
Christensen DG, Tepavčević J, Visick KL. Genetic Manipulation of Vibrio fischeri. ACTA ACUST UNITED AC 2021; 59:e115. [PMID: 32975913 DOI: 10.1002/cpmc.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species. The bacterium has been used as a model organism to study symbiosis in the context of its association with its host, the Hawaiian bobtail squid Euprymna scolopes. The genetic tractability of this bacterium has facilitated the mapping of pathways that mediate interactions between these organisms. The protocols included here describe methods for genetic manipulation of V. fischeri. Following these protocols, the researcher will be able to introduce linear DNA via transformation to make chromosomal mutations, to introduce plasmid DNA via conjugation and subsequently eliminate unstable plasmids, to eliminate antibiotic resistance cassettes from the chromosome, and to randomly or specifically mutagenize V. fischeri with transposons. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Transformation of V. fischeri with linear DNA Basic Protocol 2: Plasmid transfer into V. fischeri via conjugation Support Protocol 1: Removing FRT-flanked antibiotic resistance cassettes from the V. fischeri genome Support Protocol 2: Eliminating unstable plasmids from V. fischeri Alternate Protocol 1: Introduction of exogenous DNA using a suicide plasmid Alternate Protocol 2: Site-specific transposon insertion using a suicide plasmid Alternate Protocol 3: Random transposon mutagenesis using a suicide plasmid.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | | | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
6
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
7
|
|
8
|
Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives. Methods Mol Biol 2019; 2016:87-104. [PMID: 31197712 DOI: 10.1007/978-1-4939-9570-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutagenizing bacterial genomes with selectable transposon insertions is an effective approach for identifying the genes underlying important phenotypes. Specific bacteria may require different tools and methods for effective transposon mutagenesis, and here we describe methods to mutagenize Vibrio fischeri using an engineered mini-Tn5 transposon with synthetic "mosaic" transposon ends. The transposon is delivered by conjugation on a plasmid that cannot replicate in V. fischeri and that encodes a hyperactive transposase outside the transposon itself. The chromosomal location of insertions can be readily identified by cloning and/or PCR-based methods described here. Although developed in V. fischeri, these tools and methods have proven effective in some other bacteria as well.
Collapse
|
9
|
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME JOURNAL 2018; 13:789-804. [PMID: 30429574 PMCID: PMC6461909 DOI: 10.1038/s41396-018-0304-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.
Collapse
|
10
|
Jones RM, Popham DL, Schmidt AL, Neidle EL, Stabb EV. Vibrio fischeri DarR Directs Responses to d-Aspartate and Represents a Group of Similar LysR-Type Transcriptional Regulators. J Bacteriol 2018; 200:e00773-17. [PMID: 29437849 PMCID: PMC6040199 DOI: 10.1128/jb.00773-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence suggests that d-amino acids play previously underappreciated roles in diverse organisms. In bacteria, even d-amino acids that are absent from canonical peptidoglycan (PG) may act as growth substrates, as signals, or in other functions. Given these proposed roles and the ubiquity of d-amino acids, the paucity of known d-amino-acid-responsive transcriptional control mechanisms in bacteria suggests that such regulation awaits discovery. We found that DarR, a LysR-type transcriptional regulator (LTTR), activates transcription in response to d-Asp. The d-Glu auxotrophy of a Vibrio fischerimurI::Tn mutant was suppressed, with the wild-type PG structure maintained, by a point mutation in darR This darR mutation resulted in the overexpression of an adjacent operon encoding a putative aspartate racemase, RacD, which compensated for the loss of the glutamate racemase encoded by murI Using transcriptional reporters, we found that wild-type DarR activated racD transcription in response to exogenous d-Asp but not upon the addition of l-Asp, l-Glu, or d-Glu. A DNA sequence typical of LTTR-binding sites was identified between darR and the divergently oriented racD operon, and scrambling this sequence eliminated activation of the reporter in response to d-Asp. In several proteobacteria, genes encoding LTTRs similar to DarR are linked to genes with predicted roles in d- and/or l-Asp metabolism. To test the functional similarities in another bacterium, darR and racD mutants were also generated in Acinetobacter baylyi In V. fischeri and A. baylyi, growth on d-Asp required the presence of both darR and racD Our results suggest that multiple bacteria have the ability to sense and respond to d-Asp.IMPORTANCE d-Amino acids are prevalent in the environment and are generated by organisms from all domains of life. Although some biological roles for d-amino acids are understood, in other cases, their functions remain uncertain. Given the ubiquity of d-amino acids, it seems likely that bacteria will initiate transcriptional responses to them. Elucidating d-amino acid-responsive regulators along with the genes they control will help uncover bacterial uses of d-amino acids. Here, we report the discovery of DarR, a novel LTTR in V. fischeri that mediates a transcriptional response to environmental d-Asp and underpins the catabolism of d-Asp. DarR represents the founding member of a group of bacterial homologs that we hypothesize control aspects of aspartate metabolism in response to d-Asp and/or to d-Asp-containing peptides.
Collapse
Affiliation(s)
- Richard M Jones
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Mandel MJ. D-fining DarR: a LysR-type transcriptional regulator that responds to D-aspartate. J Bacteriol 2018; 200:e00121-18. [PMID: 29555693 PMCID: PMC6040187 DOI: 10.1128/jb.00121-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Work from Jones, Stabb, et al. describes a D-aspartate sensing system in Proteobacteria. D-amino acids are critical components of peptidoglycan and other structures. The new study identifies the LysR-type transcriptional regulator, DarR, which activates the aspartate racemase RacD. Overexpression of RacD enables it to synthesize D-glutamate and restore normal peptidoglycan in a Vibrio fischeri murI mutant. This study contributes to emerging roles for D-amino acids and how they are synthesized under distinct conditions.
Collapse
Affiliation(s)
- Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|