1
|
Foresto E, Revale S, Nievas F, Carezzano ME, Puente M, Alzari P, Martinez M, Ben-Assaya M, Mornico D, Santoro M, Martinez-Abarca F, Giordano W, Bogino P. Genome sequence of Mesorhizobium mediterraneum strain R31, a nitrogen-fixing rhizobium used as an inoculant for chickpea in Argentina. Microbiol Resour Announc 2023; 12:e0058123. [PMID: 37772816 PMCID: PMC10586107 DOI: 10.1128/mra.00581-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Here, we report the complete genome sequence of Mesorhizobium mediterraneum R31, a rhizobial strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of 7.25 Mb, distributed into four circular replicons: a chromosome of 6.72 Mbp and three plasmids of 0.29, 0.17, and 0.07 Mbp.
Collapse
Affiliation(s)
- Emiliano Foresto
- Departamento de Biología Molecular, Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Fiorela Nievas
- Departamento de Biología Molecular, Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - María Evangelina Carezzano
- Departamento de Biología Molecular, Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Mariana Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (IMYZA-INTA), Castelar, Argentina
| | - Pedro Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Mariano Martinez
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Mathilde Ben-Assaya
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Damien Mornico
- Département Biologie Computationnelle, Hub de Bioinformatique et Biostatistique, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Maricel Santoro
- Department of Biochemistry, Max Planck for Chemical Ecology, Jena, Germany
| | | | - Walter Giordano
- Departamento de Biología Molecular, Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Pablo Bogino
- Departamento de Biología Molecular, Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
2
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
3
|
Xavier GR, Jesus EDC, Dias A, Coelho MRR, Molina YC, Rumjanek NG. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. PLANTS (BASEL, SWITZERLAND) 2023; 12:954. [PMID: 36840302 PMCID: PMC9962295 DOI: 10.3390/plants12040954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.
Collapse
Affiliation(s)
| | | | - Anelise Dias
- Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, UFRRJ, Rodovia BR-465, Km 7, Seropédica 23890-000, RJ, Brazil
| | | | - Yulimar Castro Molina
- Programa de Pós-graduação em Microbiologia Agrícola, Universidade Federal de Lavras, UFLA, Trevo Rotatório Professor Edmir Sá Santos, Lavras 37203-202, MG, Brazil
| | | |
Collapse
|
4
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
5
|
Colombi E, Hill Y, Lines R, Sullivan JT, Kohlmeier MG, Christophersen CT, Ronson CW, Terpolilli JJ, Ramsay JP. Population genomics of Australian indigenous Mesorhizobium reveals diverse nonsymbiotic genospecies capable of nitrogen-fixing symbioses following horizontal gene transfer. Microb Genom 2023; 9:mgen000918. [PMID: 36748564 PMCID: PMC9973854 DOI: 10.1099/mgen.0.000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative elements (ICESyms) to indigenous mesorhizobia in soils. Evolved symbionts exhibit a wide range in symbiotic effectiveness, with some fixing nitrogen poorly or not at all. Little is known about the genetic diversity and symbiotic potential of indigenous soil mesorhizobia prior to ICESym acquisition. Here we sequenced genomes of 144 Mesorhizobium spp. strains cultured directly from cultivated and uncultivated Australian soils. Of these, 126 lacked symbiosis genes. The only isolated symbiotic strains were either exotic strains used previously as legume inoculants, or indigenous mesorhizobia that had acquired exotic ICESyms. No native symbiotic strains were identified. Indigenous nonsymbiotic strains formed 22 genospecies with phylogenomic diversity overlapping the diversity of internationally isolated symbiotic Mesorhizobium spp. The genomes of indigenous mesorhizobia exhibited no evidence of prior involvement in nitrogen-fixing symbiosis, yet their core genomes were similar to symbiotic strains and they generally lacked genes for synthesis of biotin, nicotinate and thiamine. Genomes of nonsymbiotic mesorhizobia harboured similar mobile elements to those of symbiotic mesorhizobia, including ICESym-like elements carrying aforementioned vitamin-synthesis genes but lacking symbiosis genes. Diverse indigenous isolates receiving ICESyms through horizontal gene transfer formed effective symbioses with Lotus and Biserrula legumes, indicating most nonsymbiotic mesorhizobia have an innate capacity for nitrogen-fixing symbiosis following ICESym acquisition. Non-fixing ICESym-harbouring strains were isolated sporadically within species alongside effective symbionts, indicating chromosomal lineage does not predict symbiotic potential. Our observations suggest previously observed genomic diversity amongst symbiotic Mesorhizobium spp. represents a fraction of the extant diversity of nonsymbiotic strains. The overlapping phylogeny of symbiotic and nonsymbiotic clades suggests major clades of Mesorhizobium diverged prior to introduction of symbiosis genes and therefore chromosomal genes involved in symbiosis have evolved largely independent of nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Elena Colombi
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.,Present address: School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Yvette Hill
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South St, Murdoch, Western Australia 6150, Australia
| | - Rose Lines
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - MacLean G Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South St, Murdoch, Western Australia 6150, Australia
| | - Claus T Christophersen
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia.,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jason J Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South St, Murdoch, Western Australia 6150, Australia
| | - Joshua P Ramsay
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
6
|
Nodulation and Growth Promotion of Chickpea by Mesorhizobium Isolates from Diverse Sources. Microorganisms 2022; 10:microorganisms10122467. [PMID: 36557720 PMCID: PMC9783758 DOI: 10.3390/microorganisms10122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The cultivation of chickpea (Cicer arietinum L.) in South Africa is dependent on the application of suitable Mesorhizobium inoculants. Therefore, we evaluated the symbiotic effectiveness of several Mesorhizobium strains with different chickpea genotypes under controlled conditions. The tested parameters included shoot dry weight (SDW), nodule fresh weight (NFW), plant height, relative symbiotic effectiveness (RSE) on the plant as well as indole acetic acid (IAA) production and phosphate solubilization on the rhizobia. Twenty-one Mesorhizobium strains and six desi chickpea genotypes were laid out in a completely randomized design (CRD) with three replicates in a glasshouse pot experiment. The factors, chickpea genotype and Mesorhizobium strain, had significant effects on the measured parameters (p < 0.001) but lacked significant interactions based on the analysis of variance (ANOVA). The light variety desi genotype outperformed the other chickpea genotypes on all tested parameters. In general, inoculation with strains LMG15046, CC1192, XAP4, XAP10, and LMG14989 performed best for all the tested parameters. All the strains were able to produce IAA and solubilize phosphate except the South African field isolates, which could not solubilize phosphate. Taken together, inoculation with compatible Mesorhizobium promoted chickpea growth. This is the first study to report on chickpea-compatible Mesorhizobium strains isolated from uninoculated South African soils with no history of chickpea production; although, their plant growth promotion ability was poorer compared to some of the globally sourced strains. Since this study was conducted under controlled conditions, we recommend field studies to assess the performance of the five highlighted strains under environmental conditions in South Africa.
Collapse
|
7
|
Zaw M, Rathjen JR, Zhou Y, Ryder MH, Denton MD. Rhizobial diversity is associated with inoculation history at a two-continent scale. FEMS Microbiol Ecol 2022; 98:6567838. [PMID: 35416244 PMCID: PMC9329089 DOI: 10.1093/femsec/fiac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
A total of 120 Mesorhizobium strains collected from the central dry zone of Myanmar were analyzed in a pot experiment to evaluate nodulation and symbiotic effectiveness (SE%) in chickpea plants. Phylogenetic analyses revealed all strains belonged to the genus Mesorhizobium according to 16–23S rDNA IGS and the majority of chickpea nodulating rhizobia in Myanmar soils were most closely related to M. gobiense, M. muleiense, M. silamurunense, M. tamadayense and M. temperatum. Around two-thirds of the Myanmar strains (68%) were most closely related to Indian strain IC-2058 (CA-181), which is also most closely related to M. gobiense. There were no strains that were closely related to the cognate rhizobial species to nodulate chickpea: M. ciceri and M. mediterraneum. Strains with diverse 16S–23S rDNA IGS shared similar nodC and nifH gene sequences with chickpea symbionts. Detailed sequence analysis of nodC and nifH found that the strains in Myanmar were somewhat divergent from the group including M. ciceri and were more closely related to M. muleiense and IC-2058. A cross-continent analysis between strains isolated in Australia compared with Myanmar found that there was little overlap in species, where Australian soils were dominated with M. ciceri, M. temperatum and M. huakuii. The only co-occurring species found in both Myanmar and Australia were M. tamadayense and M. silumurunense. Continued inoculation with CC1192 may have reduced diversity of chickpea strains in Australian soils. Isolated strains in Australian and Myanmar had similar adaptive traits, which in some cases were also phylogenetically related. The genetic discrepancy between chickpea nodulating strains in Australia and Myanmar is not only due to inoculation history but to adaptation to soil conditions and crop management over a long period, and there has been virtually no loss of symbiotic efficiency over this time in strains isolated from soils in Myanmar.
Collapse
Affiliation(s)
- Myint Zaw
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia.,Yezin Agricultural University, Yezin, Naypyidaw 15013, Myanmar
| | - Judith R Rathjen
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Maarten H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| |
Collapse
|
8
|
Abstract
Root nodulating rhizobia are nearly ubiquitous in soils and provide the critical service of nitrogen fixation to thousands of legume species, including staple crops. However, the magnitude of fixed nitrogen provided to hosts varies markedly among rhizobia strains, despite host legumes having mechanisms to selectively reward beneficial strains and to punish ones that do not fix sufficient nitrogen. Variation in the services of microbial mutualists is considered paradoxical given host mechanisms to select beneficial genotypes. Moreover, the recurrent evolution of non-fixing symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. Here, we deconstructed hundreds of genome sequences from genotypically and phenotypically diverse Bradyrhizobium strains and revealed mechanisms that generate variation in symbiotic nitrogen fixation. We show that this trait is conferred by a modular system consisting of many extremely large integrative conjugative elements and few conjugative plasmids. Their transmissibility and propensity to reshuffle genes generate new combinations that lead to uncooperative genotypes and make individual partnerships unstable. We also demonstrate that these same properties extend beneficial associations to diverse host species and transfer symbiotic capacity among diverse strains. Hence, symbiotic nitrogen fixation is underpinned by modularity, which engenders flexibility, a feature that reconciles evolutionary robustness and instability. These results provide new insights into mechanisms driving the evolution of mobile genetic elements. Moreover, they yield a new predictive model on the evolution of rhizobial symbioses, one that informs on the health of organisms and ecosystems that are hosts to symbionts and that helps resolve the long-standing paradox.
Collapse
|
9
|
Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ, Ronson CW, Ramsay JP. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom 2021; 7. [PMID: 34605762 PMCID: PMC8627217 DOI: 10.1099/mgen.0.000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Mesorhizobium genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised Mesorhizobium spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete Mesorhizobium genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEMspSymAA22. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICEMlSymR7A, with each carrying conserved genes for conjugative pilus formation (trb), excision (rdfS), DNA transfer (rlxS) and regulation (fseA). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene trbK. Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the Mesorhizobium genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICEMlSymR7A.
Collapse
Affiliation(s)
- Elena Colombi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanuel A Bekuma
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia.,Present address: Western Australian Department of Primary Industries and Regional Development, Research and Industry Innovation, South Perth, WA, Australia
| | - Jason J Terpolilli
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| |
Collapse
|
10
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|