1
|
Druce E, Grego M, Bolhuis H, Johnes PJ, Sánchez-Baracaldo P. Draft Genome Sequences of Synechococcus sp. strains CCAP1479/9, CCAP1479/10, CCAP1479/13, CCY0621, and CCY9618: Five Freshwater Syn/Pro Clade Picocyanobacteria. J Genomics 2023; 11:26-36. [PMID: 37152813 PMCID: PMC10161378 DOI: 10.7150/jgen.81013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Picocyanobacteria are essential primary producers in freshwaters yet little is known about their genomic diversity and ecological niches. We report here five draft genomes of freshwater picocyanobacteria: Synechococcus sp. CCAP1479/9, Synechococcus sp. CCAP1479/10, and Synechococcus sp. CCAP1479/13 isolated from Lake Windermere in the Lake District, UK; and Synechococcus sp. CCY0621 and Synechococcus sp. CCY9618 isolated from lakes in The Netherlands. Phylogenetic analysis reveals all five strains belonging to sub-cluster 5.2 of the Synechococcus and Prochlorococcus clade of Cyanobacteria. These five strains are divergent from Synechococcus elongatus, an often-used model for freshwater Synechococcus. Functional annotation revealed significant differences in the number of genes involved in the transport and metabolism of several macro-molecules between freshwater picocyanobacteria from sub-cluster 5.2 and Synechococcus elongatus, including amino acids, lipids, and carbohydrates. Comparative genomic analysis identified further differences in the presence of photosynthesis-associated proteins while gene neighbourhood comparisons revealed alternative structures of the nitrate assimilation operon nirA.
Collapse
Affiliation(s)
- Elliot Druce
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| | - Michele Grego
- CNRS and Sorbonne Université, FR 2424, Roscoff Culture Collection, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands
| | - Penny J. Johnes
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| | - Patricia Sánchez-Baracaldo
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
2
|
Quantification of Marine Picocyanobacteria on Water Column Particles and in Sediments Using Real-Time PCR Reveals Their Role in Carbon Export. mSphere 2022; 7:e0049922. [PMID: 36472446 PMCID: PMC9769826 DOI: 10.1128/msphere.00499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria are the most abundant primary producers in the ocean and play a fundamental role in marine carbon cycling. Quantification of picocyanobacteria on sinking particles and in sediments is essential to understanding their contribution to the biological carbon pump. We designed a primer set targeting the 16S-23S rRNA internal transcribed spacer (ITS) sequence of cyanobacteria and established a quantitative PCR (qPCR) method for quantifying the ITS sequence abundance. High-throughput sequencing confirmed that this primer set can cover broad diversities of marine picocyanobacteria and avoid amplification of other marine cyanobacteria such as Trichodesmium and Crocosphaera. Amplification efficiencies were slightly different when seven marine Synechococcus and Prochlorococcus strains were assayed. The qPCR results were comparable with flow cytometry for water samples. Using this method, we found that, in the dark ocean, picocyanobacterial ITS sequence abundances were 10 to 100 copies/mL in the size fraction of 0.2 to 3 μm, which were 1 to 3 orders of magnitude more abundant than on the >3-μm particles. We also found that picocyanobacterial ITS abundance in sediment ranged from 105 to 107 copies/g along two nearshore-to-offshore transects in the northern South China Sea. These results further explain the important role of picocyanobacteria in carbon export. Collectively, we provide a qPCR method quantifying the total abundance of marine picocyanobacteria on water column particles and in sediments. Moreover, this newly designed primer set can be also applied to investigate the community of picocyanobacteria via high-throughput sequencing. IMPORTANCE Picocyanobacteria are the most abundant primary producers in the ocean. However, quantification of picocyanobacteria on the sinking particles and in sediments remains challenging using flow cytometry or epifluorescence microscopy. Here, we developed a real-time PCR method to quantify picocyanobacteria using a newly designed primer set specifically targeting the 16S-23S rRNA ITS sequence of cyanobacteria. We showed that in the dark ocean, picocyanobacteria are 1 to 3 orders of magnitude more abundant in small particles (0.2 to 3 μm) than in larger particles (>3 μm). This result supports the important role of direct sinking free-living picocyanobacteria cells in the carbon export to deep ocean. We also found that the picocyanobacterial ITS sequence abundance were 105 to 107 copies per gram in sediments, suggesting significant accumulation of sinking picocyanobacteria in the benthic ecosystem. This qPCR method can be used to quantify the contribution of picocyanobacteria to the biological carbon pump.
Collapse
|
3
|
Jia J, Wang Y, Lu Y, Sun K, Lyu S, Gao Y. Driving mechanisms of gross primary productivity geographical patterns for Qinghai-Tibet Plateau lake systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148286. [PMID: 34118660 DOI: 10.1016/j.scitotenv.2021.148286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Being a fundamental property of aquatic systems, gross primary productivity (GPP) is affected by complex environmental factors, such as salinity, nutrients, pH, and sunlight. Under conditions of intensified anthropogenic activity and climate change, it is critical to understand the driving mechanisms of GPP in alpine lakes. In this study, we investigated GPP and associated environmental factors of 23 lake systems in the Qinghai-Tibet Plateau (QTP) along an altitudinal range (from 2500 m to 4500 m). Results showed an increase in chlorophyll a (Chl a) content as altitude increased and a corresponding decrease as salinity increased. Furthermore, geographical patterns of GPP were higher at the mid-gradient and lower at the extreme gradient. Higher solar radiation and water temperatures, stronger evaporation and higher salinity levels, and lower pH and higher nutrient content were all driving mechanisms of GPP in low altitudinal lake systems within high latitudinal regions. Such conditions have collectively resulted in the current GPP pattern via the promotion or inhibition of phytoplankton growth and photosynthesis. Specifically, geographical features and climate change jointly drive algal growth and GPP of alpine lake systems via internal circulation processes; however, anthropogenic activities interfere with external circulation processes for most of lower-middle altitudinal lake systems, thus playing a certain role in regulating environmental factors and GPP alongside climate change.
Collapse
Affiliation(s)
- Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yafeng Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Sidan Lyu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Banda JF, Zhang Q, Ma L, Pei L, Du Z, Hao C, Dong H. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148108. [PMID: 34126487 DOI: 10.1016/j.scitotenv.2021.148108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Badain Jaran Desert (BJD), characterized by extremely arid climate and tallest sand dunes in the world, is the second largest desert in China. Surprisingly, there are a large number of permanent lakes in this desert. At present, little is known about the composition and distribution of microbial communities in these desert lakes, which are an important bioresource and play a fundamental role in the elemental cycles of the lakes. In this study, the physicochemical characteristics and microbial communities of water samples from 15 lakes in BJD were comparatively investigated. The results showed that the lakes were rich in Na+, Cl-, CO32- and HCO3- while Ca2+ and Mg2+ were scarce, with pH 8.52-10.27 and salinity 1.05-478.70 g/L. Bacteria dominated exclusively in low saline lakes (salinity < 50 g/L) while archaea were predominant in hypersaline lakes (salinity > 250 g/L), which abundance increased along salinity gradient linearly. Genera Flavobacterium, Synechocystis and Roseobacter from phyla Bacteroidetes, Cyanobacteria, Alphaproteobacteria were the major members in low saline lakes whereas Halomonas, Aliidiomarina and Halopelagius from Gammaproteobacteria and Euryarchaeota were abundant in moderately saline lakes (salinity 50-250 g/L). The hypersaline lakes were predominated by extreme halophiles such as Halorubrum, Halohasta and Natronomonas from Euryarchaeota. The correlation among the microbes in the lakes was mainly positive, suggesting they can survive in the harsh environments through synergistic interactions. Statistical analyses indicated that physicochemical characteristics rather than spatial factors shaped the microbial communities in the desert lakes. The pH was the most important environmental factor controlling alpha diversity, while salinity was the major driver determining microbial community structure in BJD lakes. In contrast, geographic factors had no significant impact on the microbial community compositions.
Collapse
Affiliation(s)
- Joseph Frazer Banda
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qin Zhang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Linqiang Ma
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Lixin Pei
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Zerui Du
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Hailiang Dong
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
5
|
Somogyi B, Felföldi T, Tóth LG, Bernát G, Vörös L. Photoautotrophic picoplankton - a review on their occurrence, role and diversity in Lake Balaton. Biol Futur 2021; 71:371-382. [PMID: 34554456 DOI: 10.1007/s42977-020-00030-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Occurrence of the smallest phototrophic microorganisms (photoautotrophic picoplankton, APP) in Lake Balaton was discovered in the early 1980s. This triggered a series of systematic studies on APP and resulted in the setting of a unique long-term picoplankton dataset. In this review, we intend to summarize the obtained results and to give a new insight on APP ecology and diversity in Lake Balaton. According to the results, APP dynamics depends on trophic state, temperature, nutrient, and light availability, as well as grazing pressure. APP abundance in Lake Balaton decreased to a low level (1-2 × 105 cells mL-1) as a consequence of decreasing nutrient supply (oligotrophication) during the past more than two decades, and followed a characteristic seasonal dynamics with higher abundance values from spring to autumn than in winter. Concomitantly, however, the APP contribution to both phytoplankton biomass and primary production increased (up to 70% and 40-50%, respectively) during oligotrophication. Regarding annual pattern, picocyanobacteria are dominant from spring to autumn, while in winter, picoeukaryotes are the most abundant, most likely due to the different light and temperature optima of these groups. Within picocyanobacteria, single cells and microcolonies were both observed with mid-summer dominance of the latter which correlated well with the density of cladocerans. Community-level chromatic adaptation (i.e., dominance of phycoerythrin- or phycocyanin-rich forms) of planktonic picocyanobacteria was also found as a function of underwater light quality. Sequence analysis studies of APP in Lake Balaton revealed that both picocyanobacteria and picoeukaryotes represent a diverse and dynamic community consisting several freshwater genotypes (picocyanobacteria: Synechococcus, Cyanobium; picoeukaryotes: Choricystis, Stichococcus, Mychonastes, Nannochloris, and Nannochloropsis).
Collapse
Affiliation(s)
- Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary.
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - László G Tóth
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Gábor Bernát
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Lajos Vörös
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| |
Collapse
|
6
|
Tandon K, Baatar B, Chiang PW, Dashdondog N, Oyuntsetseg B, Tang SL. A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms 2020; 8:E1729. [PMID: 33158252 PMCID: PMC7716208 DOI: 10.3390/microorganisms8111729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, climate change coupled with anthropogenic activities has led to monumental changes in saline lakes which are rapidly drying up across the globe and particularly in Central Asia. The landlocked country of Mongolia is rich in lakes which have remained primarily undisturbed by human impact, and many of these lakes have varying salinity regimes and are located across various geographical landscapes. In this study, we sampled 18 lakes with varying salinity regimes (hyperhaline, mesohaline, oligohaline, and polyhaline) covering 7000 km of western Mongolia and its various geographical landscapes (Gobi Desert, forests, and steppe). We identified that the bacterial communities that dominate these lakes are significantly influenced by salinity (p < 0.001) and geographical landscape (p < 0.001). Further, only five zOTUs were shared in all the lakes across the salinity regimes, providing evidence that both local and regional factors govern the community assembly and composition. Furthermore, the bacterial communities of hyperhaline lakes were significantly positively correlated with salinity (ANOVA, p < 0.001) and arsenic concentrations (ANOVA, p < 0.001), whereas bacterial communities of mesohaline and polyhaline lakes situated in forest and steppe landscapes were positively correlated with temperature (ANOVA, p < 0.001) and altitude (ANOVA, p < 0.001), respectively. Functional predictions based on the 16S rRNA gene indicated enrichment of KEGG Ontology terms related to transporters for osmoprotection and -regulation. Overall, our study provides a comprehensive view of the bacterial diversity and community composition present in these lakes, which might be lost in the future.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bayanmunkh Baatar
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
| | - Narangarvuu Dashdondog
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Bolormaa Oyuntsetseg
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Microbial Diversity: The Gap between the Estimated and the Known. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Yang J, Jiang H, Liu W, Wang B. Benthic Algal Community Structures and Their Response to Geographic Distance and Environmental Variables in the Qinghai-Tibetan Lakes With Different Salinity. Front Microbiol 2018; 9:578. [PMID: 29636745 PMCID: PMC5880929 DOI: 10.3389/fmicb.2018.00578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
9
|
Jiang Y, Xiao P, Liu Y, Wang J, Li R. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes. HARMFUL ALGAE 2017; 64:42-50. [PMID: 28427571 DOI: 10.1016/j.hal.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
10
|
Liu K, Liu Y, Jiao N, Zhu L, Wang J, Hu A, Liu X. Vertical variation of bacterial community in Nam Co, a large stratified lake in central Tibetan Plateau. Antonie van Leeuwenhoek 2016; 109:1323-35. [DOI: 10.1007/s10482-016-0731-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/02/2016] [Indexed: 11/28/2022]
|