1
|
Pham NP, Gingras H, Godin C, Feng J, Groppi A, Nikolski M, Leprohon P, Ouellette M. Holistic understanding of trimethoprim resistance in Streptococcus pneumoniae using an integrative approach of genome-wide association study, resistance reconstruction, and machine learning. mBio 2024; 15:e0136024. [PMID: 39120145 PMCID: PMC11389379 DOI: 10.1128/mbio.01360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial resistance (AMR) is a public health threat worldwide. Next-generation sequencing (NGS) has opened unprecedented opportunities to accelerate AMR mechanism discovery and diagnostics. Here, we present an integrative approach to investigate trimethoprim (TMP) resistance in the key pathogen Streptococcus pneumoniae. We explored a collection of 662 S. pneumoniae genomes by conducting a genome-wide association study (GWAS), followed by functional validation using resistance reconstruction experiments, combined with machine learning (ML) approaches to predict TMP minimum inhibitory concentration (MIC). Our study showed that multiple additive mutations in the folA and sulA loci are responsible for TMP non-susceptibility in S. pneumoniae and can be used as key features to build ML models for digital MIC prediction, reaching an average accuracy within ±1 twofold dilution factor of 86.3%. Our roadmap of in silico analysis-wet-lab validation-diagnostic tool building could be adapted to explore AMR in other combinations of bacteria-antibiotic. IMPORTANCE In the age of next-generation sequencing (NGS), while data-driven methods such as genome-wide association study (GWAS) and machine learning (ML) excel at finding patterns, functional validation can be challenging due to the high numbers of candidate variants. We designed an integrative approach combining a GWAS on S. pneumoniae clinical isolates, followed by whole-genome transformation coupled with NGS to functionally characterize a large set of GWAS candidates. Our study validated several phenotypic folA mutations beyond the standard Ile100Leu mutation, and showed that the overexpression of the sulA locus produces trimethoprim (TMP) resistance in Streptococcus pneumoniae. These validated loci, when used to build ML models, were found to be the best inputs for predicting TMP minimal inhibitory concentrations. Integrative approaches can bridge the genotype-phenotype gap by biological insights that can be incorporated in ML models for accurate prediction of drug susceptibility.
Collapse
Affiliation(s)
- Nguyen-Phuong Pham
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Chantal Godin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexis Groppi
- Bordeaux Bioinformatics Center and CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC) UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Macha Nikolski
- Bordeaux Bioinformatics Center and CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC) UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
2
|
Liu J, Spencer N, Utter DR, Grossman AS, Lei L, Dos Santos NC, Shi W, Baker JL, Hasturk H, He X, Bor B. Persistent enrichment of multidrug-resistant Klebsiella in oral and nasal communities during long-term starvation. MICROBIOME 2024; 12:132. [PMID: 39030586 PMCID: PMC11264962 DOI: 10.1186/s40168-024-01854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess clinically significant antibiotic resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, the essential transmission factors influencing the spread of Klebsiella species among both healthy and diseased individuals remain unclear. RESULTS Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella species to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments or the microenvironment of mechanical ventilators. When K. pneumoniae and K. aerogenes were present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became enriched in Klebsiella species. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated enrichment under starvation. Precise monitoring of K. pneumoniae within these communities undergoing starvation indicated rapid initial growth and prolonged viability compared to other members of the microbiome. K. pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella species, other understudied opportunistic pathogens, such as Peptostreptococcus, increased in relative abundance under starvation conditions. CONCLUSIONS Our findings establish an environmental and microbiome community circumstance that allows for the enrichment of Klebsiella species and other opportunistic pathogens. Klebsiella's enrichment may hinge on its ability to quickly outgrow other members of the microbiome. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions could be an important factor that contributes to enhanced transmission in both commensal and pathogenic contexts. Video Abstract.
Collapse
Affiliation(s)
- Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Nell Spencer
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Nídia Castro Dos Santos
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
- Albert Einstein School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
| | - Wenyuan Shi
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
4
|
Zhao L, Yang X, Liang Y, Zhang Z, Ding Y, Wang Y, Chen B, Wu J, Jin C, Zhao G, Li Z, Zhang L. Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Microbiol Spectr 2024; 12:e0317723. [PMID: 38193687 PMCID: PMC10846076 DOI: 10.1128/spectrum.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies.
Collapse
Affiliation(s)
- Lanlan Zhao
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Liang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziyi Zhang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanwen Ding
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihui Wang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Chen
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiacheng Wu
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuandi Jin
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziyun Li
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lei Zhang
- MicrobiomeX, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Liu J, Spencer N, Utter DR, Grossman A, Santos NC, Shi W, Baker JL, Hasturk H, He X, Bor B. Persistent enrichment of multidrug resistant Klebsiella in oral and nasal communities during long-term starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572173. [PMID: 38187725 PMCID: PMC10769290 DOI: 10.1101/2023.12.18.572173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess a clinically-significant antibiotic-resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, how Klebsiella transitions from an asymptomatic colonizer to a pathogen remains unclear. Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments. When Klebsiella was present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became dominated by Klebsiella. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated dominance under starvation. K.pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella, other understudied opportunistic pathogens, such as Peptostreptococcus, dominate under starvation conditions. Our findings establish an environmental circumstance that allows for the outgrowth of Klebsiella and other opportunistic pathogens. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions may contribute to the colonization-to-infection transition of these opportunistic pathogens.
Collapse
Affiliation(s)
- Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Nell Spencer
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Daniel R. Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Nídia C.D. Santos
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Albert Einstein School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
| | - Wenyuan Shi
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Jonathon L. Baker
- Department of Oral Rehabilitation & Biosciences, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, ADA Forsyth Institute, Cambridge, MA 02138, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
6
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
7
|
García Mendez D, Sanabria J, Wist J, Holmes E. Effect of Operational Parameters on the Cultivation of the Gut Microbiome in Continuous Bioreactors Inoculated with Feces: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6213-6225. [PMID: 37070710 PMCID: PMC10143624 DOI: 10.1021/acs.jafc.2c08146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Since the early 1980s, multiple researchers have contributed to the development of in vitro models of the human gastrointestinal system for the mechanistic interrogation of the gut microbiome ecology. Using a bioreactor for simulating all the features and conditions of the gastrointestinal system is a massive challenge. Some conditions, such as temperature and pH, are readily controlled, but a more challenging feature to simulate is that both may vary in different regions of the gastrointestinal tract. Promising solutions have been developed for simulating other functionalities, such as dialysis capabilities, peristaltic movements, and biofilm growth. This research field is under constant development, and further efforts are needed to drive these models closer to in vivo conditions, thereby increasing their usefulness for studying the gut microbiome impact on human health. Therefore, understanding the influence of key operational parameters is fundamental for the refinement of the current bioreactors and for guiding the development of more complex models. In this review, we performed a systematic search for operational parameters in 229 papers that used continuous bioreactors seeded with human feces. Despite the reporting of operational parameters for the various bioreactor models being variable, as a result of a lack of standardization, the impact of specific operational parameters on gut microbial ecology is discussed, highlighting the advantages and limitations of the current bioreactor systems.
Collapse
Affiliation(s)
- David
Felipe García Mendez
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| | - Janeth Sanabria
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Environmental
Microbiology and Biotechnology Laboratory, Engineering School of Environmental
& Natural Resources, Engineering Faculty, Universidad del Valle—Sede Meléndez, Cali, Colombia 76001
| | - Julien Wist
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Chemistry
Department, Universidad del Valle, 76001, Cali, Colombia
| | - Elaine Holmes
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| |
Collapse
|
8
|
Bąchor U, Junka A, Brożyna M, Mączyński M. The In Vitro Impact of Isoxazole Derivatives on Pathogenic Biofilm and Cytotoxicity of Fibroblast Cell Line. Int J Mol Sci 2023; 24:2997. [PMID: 36769319 PMCID: PMC9917413 DOI: 10.3390/ijms24032997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The microbial, biofilm-based infections of chronic wounds are one of the major challenges of contemporary medicine. The use of topically administered antiseptic agents is essential to treat wound-infecting microorganisms. Due to observed microbial tolerance/resistance against specific clinically-used antiseptics, the search for new, efficient agents is of pivotal meaning. Therefore, in this work, 15 isoxazole derivatives were scrutinized against leading biofilm wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and against Candida albicans fungus. For this purpose, the minimal inhibitory concentration, biofilm reduction in microtitrate plates, modified disk diffusion methods and antibiofilm dressing activity measurement methods were applied. Moreover, the cytotoxicity and cytocompatibility of derivatives was tested toward wound bed-forming cells, referred to as fibroblasts, using normative methods. Obtained results revealed that all isoxazole derivatives displayed antimicrobial activity and low cytotoxic effect, but antimicrobial activity of two derivatives, 2-(cyclohexylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB9) and 2-(benzylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB10), was noticeably higher compared to the other compounds analyzed, especially PUB9 with regard to Staphylococcus aureus, with a minimal inhibitory concentration more than x1000 lower compared to the remaining derivatives. The PUB9 and PUB10 derivatives were able to reduce more than 90% of biofilm-forming cells, regardless of the species, displaying at the same time none (PUB9) or moderate (PUB10) cytotoxicity against fibroblasts and high (PUB9) or moderate (PUB10) cytocompatibility against these wound cells. Therefore, taking into consideration the clinical demand for new antiseptic agents for non-healing wound treatment, PUB9 seems to be a promising candidate to be further tested in advanced animal models and later, if satisfactory results are obtained, in the clinical setting.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Spatially and Temporally Confined Response of Gastrointestinal Antibiotic Resistance Gene Levels to Sulfadiazine and Extracellular Antibiotic Resistance Gene Exposure in Mice. BIOLOGY 2023; 12:biology12020210. [PMID: 36829487 PMCID: PMC9953105 DOI: 10.3390/biology12020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
This work aims to investigate the impact of antibiotics and extracellular antibiotic resistance genes (eARGs) on the dynamics of gastrointestinal antimicrobial resistance (AMR). The antibiotic resistance gene (ARG) levels of different segments of the gastrointestinal tract of mouse models were analyzed and compared after exposure to clinical concentrations of sulfadiazine and environmental levels of eARGs carried by the conjugative plasmid pR55. Exposure to sulfadiazine and eARGs led to significant changes in ARG levels by as many as four log-folds. Further analysis showed that the response of ARG levels appeared from 12-16 days after exposure and diminished 20 days after exposure. The responses in ARG levels were also restricted to different gastrointestinal segments for sulfadiazine and eARGs. Combined exposure of sulfadiazine and eARGs was unable to further increase ARG levels. From these findings, we concluded that the short-term consumption of environmental levels of eARGs and uptake of clinical levels of antibiotics lead to a spatially and temporally confined response in gastrointestinal AMR. These findings further clarify the detrimental impacts of antibiotic and eARG uptake, and the complexity of AMR development and dissemination dynamics in the gastrointestinal tract.
Collapse
|
10
|
Zhang M, Ma Y, Xu H, Wang M, Li L. Surfaces of gymnastic equipment as reservoirs of microbial pathogens with potential for transmission of bacterial infection and antimicrobial resistance. Front Microbiol 2023; 14:1182594. [PMID: 37152727 PMCID: PMC10157288 DOI: 10.3389/fmicb.2023.1182594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Gymnastic equipment surfaces are shared by many people, and could mediate the transfer of bacterial pathogens. To better understand this detrimental potential, investigations on the reservoirs of bacterial pathogens and antimicrobial resistance on the surfaces of gymnastic equipment were performed by analyzing the bacterial community structures, prevalence of viable bacteria, and presence of antimicrobial resistance on both indoor and outdoor gymnastic facilities. The results of high-throughput 16S rDNA amplicon sequencing showed that Gram-positive bacteria on the surfaces of indoor gymnastic equipment significantly enriched, including the opportunistic pathogen Staphylococcus strains, while Enterobacteriaceae significantly enriched on surfaces of outdoor gymnastic equipment. The analysis of α-diversities showed a higher richness and diversity for bacterial communities on the surfaces of gymnastic equipment than the environment. Analysis of β-diversities showed that the bacterial communities on the surfaces of gymnastic equipment differ significantly from environmental bacterial communities, while the bacterial communities on indoor and outdoor equipment are also significantly different. Thirty-four bacterial isolates were obtained from the surfaces of gymnastic equipment, including three multidrug Staphylococcus and one multidrug resistant Pantoea. In particular, Staphylococcus hemolyticus 5-6, isolated from the dumbbell surface, is a multidrug resistant, hemolytic, high- risk pathogen. The results of quantitative PCR targeting antibiotic resistance related genes (intI1, sul1 and bla TEM) showed that the abundances of sul1 and bla TEM genes on the surfaces of gymnastic equipment are higher than the environment, while the abundances of sul1 gene on indoor equipment are higher than outdoor equipment. These results lead to the conclusion that the surfaces of gymnastic equipment are potential dissemination pathways for highly dangerous pathogens as well as antimicrobial resistance, and the risks of indoor equipment are higher than outdoor equipment.
Collapse
|
11
|
Regionalization and Shaping Factors for Microbiomes and Core Resistomes in Atmospheric Particulate Matters. mSystems 2022; 7:e0069822. [PMID: 36154139 PMCID: PMC9600985 DOI: 10.1128/msystems.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) seriously threatens public health by reducing antibiotic effectiveness in curing bacterial infections. Atmospheric particulate matter (APM) is a common environmental hazard that affects human health by causing various diseases and disseminating bacterial pathogenesis, of which pathogenic bacteria and AMR are essential parts. The properties of APM microbiomes and resistomes, along with their shaping factors and mutual relationships, need further examination. To address this, we analyzed APMs collected from 13 cities within four clusters (North and South China, Inner Mongolia, and Tibet). Significant regionalization was found for both the microbiomes (P < 0.001) and core resistomes (P < 0.001) for APMs, with statistical analyses showing significant differences in different regions. Principal coordinate analysis (PCoA) and accompanying ANOSIM analyses showed that microbiomes and core resistomes followed the same regional subclustering hierarchy patterns. This finding, together with response analysis of APM microbiomes and core resistomes to environmental parameters that showed similar response patterns, as well as Procrustes analysis (M2 = 0.963, P < 0.05) between APM microbiomes and core resistomes, strongly suggested that APM microbiomes and core resistomes are correlated. Co-occurrence network analysis further revealed key taxa and antimicrobial resistance determinants in the interactions between APM microbiomes and core resistomes. Thus, it was concluded that APM microbiome and resistome compositions were highly regional, that environmental pollutants and APM levels impacted APM microbiomes and resistomes, and that microbiomes and resistomes in APMs are significantly correlated (P < 0.05). IMPORTANCE Bacteria associated with atmospheric particulate matter (APMs) can transmit over long distances. A large portion of these bacteria can potentially threaten human health. The antimicrobial resistance (AMR) of pathogenic bacteria carried by APMs prevents curing from infections. Therefore, both the pathogenic bacteria in APMs and their AMR are receiving more attention. The literature suggests a knowledge gap that exists for bacterial AMR and bacterial pathogenesis in APMs, including their distribution patterns, mutual relationships, and factors influencing their compositions. This work aimed to bridge this knowledge gap by studying APM samples collected from 13 cities. The results demonstrated that both bacteria and antibiotic resistance determinants were highly regional and that their composition patterns were significantly correlated, and influenced by the same group of environmental factors. This study thus determined the relationship between the two important aspects of bacterial pathogenesis in APMs and represents significant progress in understanding bacterial pathogenesis in APMs.
Collapse
|