1
|
Kengmo Tchoupa A, Eijkelkamp BA, Peschel A. Bacterial adaptation strategies to host-derived fatty acids. Trends Microbiol 2021; 30:241-253. [PMID: 34218980 DOI: 10.1016/j.tim.2021.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Fatty acids (FAs) are potent antimicrobials which hold great promise as viable alternatives or complements to conventional antibiotics. Intriguingly, bacteria are well equipped to use environmental FAs as energy sources and/or building blocks for their membrane lipids. Furthermore, these microbes display a wide array of mechanisms to prevent or mitigate FA toxicity. In this review we discuss strategies that bacteria use to thrive despite extensive exposure to host-derived antimicrobial FAs. We also highlight the altered response of these FA-adapted bacteria to antibiotics. Given the ubiquitous nature of FAs in various host environments, deciphering bacterial adaptation strategies to FAs is of prime importance. This knowledge may pave the way for a rational design of FA-based combination therapies with antibiotics.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Eijkelkamp BA, Begg SL, Pederick VG, Trapetti C, Gregory MK, Whittall JJ, Paton JC, McDevitt CA. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Front Microbiol 2018; 9:813. [PMID: 29867785 PMCID: PMC5958418 DOI: 10.3389/fmicb.2018.00813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Claudia Trapetti
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melissa K Gregory
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jonathan J Whittall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Churchward CP, Alany RG, Snyder LAS. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit Rev Microbiol 2018; 44:561-570. [PMID: 29733249 DOI: 10.1080/1040841x.2018.1467875] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the rising antibiotic resistance of many bacterial species, alternative treatments are necessary to combat infectious diseases. The World Health Organization and the US Centres for Disease Control and Prevention have warned that some infections, such as those from Neisseria gonorrhoeae, may be untreatable within a few years. One avenue of exploration is the use of antimicrobial fatty acids and their derivatives for therapeutic prevention or treatment of bacterial infections. Several studies have explored the activity of fatty acids and their derivatives, including monoglycerides against a variety of bacterial species. These are reviewed here, assessing the antimicrobial properties that have been demonstrated and the feasibility of therapeutic applications.
Collapse
Affiliation(s)
- Colin P Churchward
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| | - Raid G Alany
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| | - Lori A S Snyder
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| |
Collapse
|
4
|
Kato A, Use K, Takatani N, Ikeda K, Matsuura M, Kojima K, Aichi M, Maeda SI, Omata T. Modulation of the balance of fatty acid production and secretion is crucial for enhancement of growth and productivity of the engineered mutant of the cyanobacterium Synechococcus elongatus. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:91. [PMID: 27110287 PMCID: PMC4841976 DOI: 10.1186/s13068-016-0506-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Among the three model cyanobacterial species that have been used for engineering a system for photosynthetic production of free fatty acids (FFAs), Synechococcus elongatus PCC7942 has been the least successful; the FFA-excreting mutants constructed from this strain could attain lower rates of FFA excretion and lower final FFA concentrations than the mutants constructed from Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002. It has been suggested that S. elongatus PCC7942 cells suffer from toxicity of FFA, but the cause of the low productivity has remained to be determined. RESULTS By modulating the expression level of the acyl-acyl carrier protein thioesterase and raising the light intensity during cultivation, FFA secretion rates comparable to those obtained with the other cyanobacterial species were attained with an engineered Synechococcus elongatus mutant (dAS1T). The final FFA concentration in the external medium was also higher than previously reported for other S. elongatus mutants. However, about 85 % of the total FFA in the culture was found to remain in the cells, causing severe photoinhibition. Targeted inactivation of the wzt gene in dAS1T, which gene manipulation was previously shown to result in loss of the hydrophilic O-antigen layer on the cell surface, increased FFA secretion, alleviated photoinhibition, and lead to 50 and 45 % increase in the final cell density and the total amount of FFA in the culture (i.e., the sum of the cellular and extracellular FFA), respectively. The average rate of production of total FFA by the culture of the ∆wzt strain was 2.7 mg L(-1) h(-1), being five times higher than those reported for Synechocystis sp. PCC 6803 and comparable to the rates of triacylglycerol production in green algae. CONCLUSION Synechococcus elongatus PCC7942 has larger capacity of FFA production than Synechocystis sp. PCC6803 but accumulates most of the product in the cell because of the imbalance of the rates of FFA production and secretion. This causes severe photoinhibition and exerts adverse effects on cell growth and FFA productivity. Enhancement of FFA secretion would be required to fully exploiting the capacity of FFA production for the purpose of biofuel production.
Collapse
Affiliation(s)
- Akihiro Kato
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kazuhide Use
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Kazutaka Ikeda
- />Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
- />Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Miyuki Matsuura
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kouji Kojima
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Makiko Aichi
- />Department of Biological Chemistry, Chubu University, Kasugai, 487-8501 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Shin-ichi Maeda
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Tatsuo Omata
- />Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
- />Japan Science and Technology Agency, CREST, Tokyo, Japan
- />Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
5
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
6
|
Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol 2013; 89:433-49. [PMID: 23750848 DOI: 10.1111/mmi.12288] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET-mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET-bound cathepsin G; (ii) expression of the high-affinity zinc uptake receptor ZnuD allowed Nm to escape NET-mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).
Collapse
Affiliation(s)
- Martin Lappann
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Cloward JM, Shafer WM. MtrR control of a transcriptional regulatory pathway in Neisseria meningitidis that influences expression of a gene (nadA) encoding a vaccine candidate. PLoS One 2013; 8:e56097. [PMID: 23409129 PMCID: PMC3568044 DOI: 10.1371/journal.pone.0056097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
The surface-exposed NadA adhesin produced by a subset of capsular serogroup B strains of Neisseria meningitidis is currently being considered as a vaccine candidate to prevent invasive disease caused by a hypervirulent lineage of meningococci. Levels of NadA are known to be controlled by both transcriptional regulatory factors and a component of human saliva, 4-hydroxyphenylacetic acid. Herein, we confirmed the capacity of a DNA-binding protein termed FarR to negatively control nadA expression. We also found that a known transcriptional regulator of farR in N. gonorrhoeae termed MtrR can have a negative regulatory impact on farR and nadA expression, especially when over-expressed. MtrR-mediated repression of nadA was found to be direct, and its binding to a target DNA sequence containing the nadA promoter influenced formation and/or stability of FarR::nadA complexes. The complexity of the multi-layered regulation of nadA uncovered during this investigation suggests that N. meningitidis modulates NadA adhesin protein levels for the purpose of interacting with host cells yet avoiding antibody directed against surface exposed epitopes.
Collapse
Affiliation(s)
- Jason M. Cloward
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia, United States of America
| |
Collapse
|
8
|
In the NadR regulon, adhesins and diverse meningococcal functions are regulated in response to signals in human saliva. J Bacteriol 2011; 194:460-74. [PMID: 22081399 DOI: 10.1128/jb.06161-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Neisseria meningitidis regulator NadR was shown to repress expression of the NadA adhesin and play a major role in NadA phase-variable expression. In this study, we identified through microarray analysis over 30 genes coregulated with nadA in the NadR mutant and defined members of the NadR regulon through in vitro DNA-binding assays. Two distinct types of promoter architectures (I and II) were identified for NadR targets, differing in both the number and position of NadR-binding sites. All NadR-regulated genes investigated were found to respond to 4-hydroxyphenylacetic acid (4HPA), a small molecule secreted in human saliva, which was previously demonstrated to induce nadA expression by alleviating NadR-dependent repression. Interestingly, two types of NadR 4HPA responsive activities were found on different NadR targets corresponding to the two types of genes identified by different promoter architectures: while NadA and the majority of NadR targets (type I) are induced, only the MafA adhesins (type II) are corepressed in response to the same 4HPA signal. This alternate behavior of NadR was confirmed in a panel of strains in response to 4HPA and after incubation in saliva. The in vitro NadR binding activity at type I and type II promoter regions is differentially affected by 4HPA, suggesting that the nature of the NadR binding sites may define the regulation to which they will be subjected. We conclude that NadR coordinates a broad transcriptional response to signals present in human saliva, mimicked in vitro by 4HPA, enabling the meningococcus to adapt to the relevant host niche.
Collapse
|
9
|
Schielke S, Spatz C, Schwarz RF, Joseph B, Schoen C, Schulz SM, Hubert K, Frosch M, Schubert-Unkmeir A, Kurzai O. Characterization of FarR as a highly specialized, growth phase-dependent transcriptional regulator in Neisseria meningitidis. Int J Med Microbiol 2011; 301:325-33. [PMID: 21292554 DOI: 10.1016/j.ijmm.2010.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/01/2010] [Accepted: 11/29/2010] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators play an important role for the survival of Neisseria meningitidis within its human host. We have recently shown that FarR acts as transcriptional repressor of the adhesin nadA in N. meningitidis. Here, we examined the FarR regulon by microarray analyses, qRT-PCR, and electrophoretic mobility shift assays, revealing that FarR is a highly specific repressor of nadA. We demonstrate by reporter gene fusion assays that alterations of the FarR binding site within the nadA promoter are sufficient to induce transcription of nadA. Furthermore, farR expression is growth phase-dependent. The highest transcription rate was observed in the late-exponential growth phase of meningococci. Upon contact with active components of the complement system in normal human serum, expression of farR is slightly downregulated. Concluding, we present FarR as an exquisitely specialized, growth phase-dependent, possibly complement-responsive transcriptional regulator in N. meningitidis.
Collapse
Affiliation(s)
- Stephanie Schielke
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51. [PMID: 21251255 PMCID: PMC3032703 DOI: 10.1186/1471-2164-12-51] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. RESULTS We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. CONCLUSIONS Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|