Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products.
PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025;
222:109695. [PMID:
40015195 DOI:
10.1016/j.plaphy.2025.109695]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Cytochrome P450 (CYP450 or CYP450, abbreviated as CYP450) represents a large family of self-oxidizable heme proteins, belonging to the class of monooxygenases, and is named because of the specific absorption peak at 450 nm in its ferrous/CO-bound complex. Cytochrome P450 has a wide spectrum of substrates and a rich variety of catalytic reactions, plays an important role in drug metabolism, natural product biosynthesis, and biocatalysis industry. In the biosynthesis of plant natural products, it plays an important role, especially in the downstream synthesis pathway and structural modification after skeleton synthesis. There are abundant natural products from plants, including terpenes, alkaloids, flavonoids, steroidal saponins, etc., which have great development value in the medical field. In the biosynthetic pathways of these natural products, cytochrome P450 enzymes often play an important role. They can serve as rate-limiting enzymes in the biosynthetic pathways or as modifying enzymes for the structural diversity of compounds. So, a deeper understanding of cytochrome P450 enzymes in the natural product synthesis pathway will enhance the development of natural products and advance the study of their synthetic biology. This review offers an overview of the biosynthesis of key medicinal natural products, with a particular focus on the critical role of cytochrome P450 enzymes in key catalytic steps. It also highlights recent advancements in the research of natural product biosynthesis and synthetic biology.
Collapse