1
|
Duan J, Guo W. The cold adaption profiles of Pseudoalteromonas shioyasakiensis D1497 from Yap trench to cope with cold. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00689. [PMID: 34987981 PMCID: PMC8711050 DOI: 10.1016/j.btre.2021.e00689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
P. shioyasakiensis D1497converted more substrate into biomass at low temperature. P. shioyasakiensis D1497 prefered to use codons with A/T in the third position. The energy metabolism related genes were down regulated in cold environment. P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold.
Genome sequencing of Pseudoalteromonas shioyasakiensis D1497, a psychrophile from the Yap trench, revealed that it contained a circle chromosome of 3,631,285 bp with 40.94% GC content and prefered to use codons with A/T in the third position. Additionally, the relative synonymous codon usage (RSCU) values indicated the codons with A and T in the third position were always the most used. Cultivation of P. shioyasakiensis D1497 presented lower substrate consumption rate, higher ATP pool and higher conversion rate of biomass per unit substrate consumed at low temperature (15 °C) than that of the room temperature (25 °C) culture. Comparative transcriptomic analysis revealed that the mRNA abundance of energy metabolism related genes was decreased in 15 °C culture compared with that of 25 °C culture. In addition to its codon usage biases profile, P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold, converting more carbon source into biomass in cold environment.
Collapse
Affiliation(s)
- Jingjing Duan
- College of Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| | - Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| |
Collapse
|
2
|
Xu X, Chen J, Huang X, Feng S, Zhang X, She F, Wen Y. The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori. Front Microbiol 2021; 12:633166. [PMID: 33732225 PMCID: PMC7959749 DOI: 10.3389/fmicb.2021.633166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori harbors a dipeptide (Dpp) transporter consisting of a substrate-binding protein (DppA), two permeases (DppB and C), and two ATPases (DppD and F). The Dpp transporter is responsible for the transportation of dipeptides and short peptides. We found that its expression is important for the growth of H. pylori. To understand the role of the Dpp transporter in the pathogenesis of H. pylori, the expression of virulence factors and H. pylori-induced IL-8 production were investigated in H. pylori wild-type and isogenic H. pylori Dpp transporter mutants. We found that expression of CagA was downregulated, while expression of type 4 secretion system (T4SS) components was upregulated in Dpp transporter mutants. The DppA mutant strain expressed higher levels of outer membrane proteins (OMPs), including BabA, HopZ, OipA, and SabA, and showed a higher adhesion level to gastric epithelial AGS cells compared with the H. pylori 26695 wild-type strain. After infection of AGS cells, H. pylori ΔdppA induced a higher level of NF-κB activation and IL-8 production compared with wild-type. These results suggested that in addition to supporting the growth of H. pylori, the Dpp transporter causes bacteria to alter the expression of virulence factors and reduces H. pylori-induced NF-κB activation and IL-8 production in gastric epithelial cells.
Collapse
Affiliation(s)
- Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Junwei Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Wang P, Yu Z, Li B, Cai X, Zeng Z, Chen X, Wang X. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb Cell Fact 2015; 14:11. [PMID: 25612661 PMCID: PMC4318363 DOI: 10.1186/s12934-015-0194-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 11/10/2022] Open
Abstract
Pseudoalteromonas is commonly found throughout the world's oceans, and has gained increased attention due to the ecological and biological significance. Although over fifty Pseudoalteromonas genomes have been sequenced with an aim to explore the adaptive strategies in different habitats, in vivo studies are hampered by the lack of effective genetic manipulation systems for most strains in this genus. Here, nine Pseudoalteromonas strains isolated from different habitats were selected and used as representative strains to develop a universal genetic manipulation system. Erythromycin and chloramphenicol resistance were chosen as selection markers based on antibiotics resistance test of the nine strains. A conjugation protocol based on the RP4 conjugative machinery in E. coli WM3064 was developed to overcome current limitations of genetic manipulation in Pseudoalteromonas. Two mobilizable gene expression shuttle vectors (pWD2-oriT and pWD2Ery-oriT) were constructed, and conjugation efficiency of pWD2-oriT from E. coli to the nine Pseudoalteromonas strains ranged from 10(-6) to 10(-3) transconjugants per recipient cells. Two suicide vectors, pK18mobsacB-Cm and pK18mobsacB-Ery (with sacB for counter-selection), were constructed for gene knockout. To verify the feasibility of this system, we selected gene or operon that may lead to phenotypic change once disrupted as targets to facilitate in vivo functional confirmation. Successful deletions of two genes related to prodigiosin biosynthesis (pigMK) in P. rubra DSM 6842, one biofilm related gene (bsmA) in P. sp. SM9913, one gene related to melanin hyperproduction (hmgA) in P. lipolytica SCSIO 04301 and two flagella-related genes (fliF and fliG) in P. sp. SCSIO 11900 were verified, respectively. In addition, complementation of hmgA using shuttle vector pWD2-oriT was rescued the phenotype caused by deletion of chromosomal copy of hmgA in P. lipolytica SCSIO 04301. Taken together, we demonstrate that the vectors and the conjugative protocol developed here have potential to use in various Pseudoalteromonas strains.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Zichao Yu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, China.
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Structural insights into the multispecific recognition of dipeptides of deep-sea gram-negative bacterium Pseudoalteromonas sp. strain SM9913. J Bacteriol 2015; 197:1125-34. [PMID: 25605306 DOI: 10.1128/jb.02600-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Peptide uptake is important for nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria absorb peptides is still not fully understood. DppA is the periplasmic dipeptide binding protein of dipeptide permease (Dpp; an important peptide transporter in bacteria) and exclusively controls the substrate specificity of Dpp. Here, the substrate binding specificity of deep-sea Pseudoalteromonas sp. strain SM9913 DppA (PsDppA) was analyzed for 25 different dipeptides with various properties by using isothermal titration calorimetry measurements. PsDppA showed binding affinities for 8 dipeptides. To explain the multispecific substrate recognition mechanism of PsDppA, we solved the crystal structures of unliganded PsDppA and of PsDppA in complex with 4 different types of dipeptides (Ala-Phe, Met-Leu, Gly-Glu, and Val-Thr). PsDppA alternates between an "open" and a "closed" form during substrate binding. Structural analyses of the 4 PsDppA-substrate complexes combined with mutational assays indicate that PsDppA binds to different substrates through a precise mechanism: dipeptides are bound mainly by the interactions between their backbones and PsDppA, in particular by anchoring their N and C termini through ion-pair interactions; hydrophobic interactions are important in binding hydrophobic dipeptides; and Lys457 is necessary for the binding of dipeptides with a C-terminal glutamic acid or glutamine. Additionally, sequence alignment suggests that the substrate recognition mechanism of PsDppA may be common in Gram-negative bacteria. All together, our results provide structural insights into the multispecific substrate recognition mechanism of marine Gram-negative bacterial DppA, which provides a better understanding of the mechanisms of marine bacterial peptide uptake. IMPORTANCE Peptide uptake plays a significant role in nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria recognize and absorb peptides is still unclear. This study analyzed the substrate binding specificity of deep-sea Pseudoalteromonas sp. strain SM9913 DppA (PsDppA; the dipeptide-binding protein of dipeptide permease) and solved the crystal structures of unliganded PsDppA and PsDppA in complex with 4 different types of dipeptides. The multispecific recognition mechanism of PsDppA for dipeptides is explained based on structural and mutational analyses. We also find that the substrate-binding mechanism of PsDppA may be common in Gram-negative bacteria. This study sheds light on marine Gram-negative bacterial peptide uptake and marine nitrogen cycling.
Collapse
|
5
|
Zhang Y, Yi L, Lin Y, Zhang L, Shao Z, Liu Z. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27. Enzyme Microb Technol 2014; 63:64-70. [PMID: 25039062 DOI: 10.1016/j.enzmictec.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 11/21/2022]
Abstract
The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Licong Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State of Oceanic Administration, Xiamen 361005, People's Republic of China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|