1
|
Dooley D, Ryu S, Giannone RJ, Edwards J, Dien BS, Slininger PJ, Trinh CT. Expanded genome and proteome reallocation in a novel, robust Bacillus coagulans strain capable of utilizing pentose and hexose sugars. mSystems 2024; 9:e0095224. [PMID: 39377583 PMCID: PMC11575207 DOI: 10.1128/msystems.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
Collapse
Affiliation(s)
- David Dooley
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jackson Edwards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Bruce S Dien
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Patricia J Slininger
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Hiratsu K, Nunoshiba T, Togawa Y, Yamauchi Y. Development of a thermostable Cre/lox-based gene disruption system and in vivo manipulations of the megaplasmid pTT27 in Thermus thermophilus HB27. Plasmid 2024; 131-132:102730. [PMID: 39089346 DOI: 10.1016/j.plasmid.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
We previously reported the development of a Cre/lox-based gene disruption system for multiple markerless gene disruption in Thermus thermophilus; however, it was a time-consuming method because it functioned at 50 °C, the minimum growth temperature of T. thermophilus HB27. In the present study, we improved this system by introducing random mutations into the cre-expressing plasmid, pSH-Cre. One of the resulting mutant plasmids, pSH-CreFM allowed us to remove selection marker genes by Cre-mediated recombination at temperatures up to 70 °C. By using the thermostable Cre/lox system with pSH-CreFM, we successfully constructed two valuable pTT27 megaplasmid mutant strains, a plasmid-free strain and β-galactosidase gene deletion strain, which were produced by different methods. The thermostable Cre/lox system improved the time-consuming nature of the original Cre/lox system, but it was not suitable for multiple markerless gene disruption in T. thermophilus because of its highly efficient induction of Cre-mediated recombination even at 70 °C. However, in vivo megaplasmid manipulations performed at 65 °C were faster and easier than with the original Cre/lox system. Collectively, these results indicate that this system is a powerful tool for engineering T. thermophilus megaplasmids.
Collapse
Affiliation(s)
- Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan.
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo 181-8585, Japan
| | - Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Yoshito Yamauchi
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
3
|
Sartor F, Xu X, Popp T, Dodd AN, Kovács ÁT, Merrow M. The circadian clock of the bacterium B. subtilis evokes properties of complex, multicellular circadian systems. SCIENCE ADVANCES 2023; 9:eadh1308. [PMID: 37540742 PMCID: PMC10403212 DOI: 10.1126/sciadv.adh1308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Circadian clocks are pervasive throughout nature, yet only recently has this adaptive regulatory program been described in nonphotosynthetic bacteria. Here, we describe an inherent complexity in the Bacillus subtilis circadian clock. We find that B. subtilis entrains to blue and red light and that circadian entrainment is separable from masking through fluence titration and frequency demultiplication protocols. We identify circadian rhythmicity in constant light, consistent with the Aschoff's rule, and entrainment aftereffects, both of which are properties described for eukaryotic circadian clocks. We report that circadian rhythms occur in wild isolates of this prokaryote, thus establishing them as a general property of this species, and that its circadian system responds to the environment in a complex fashion that is consistent with multicellular eukaryotic circadian systems.
Collapse
Affiliation(s)
- Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Tanja Popp
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Martha Merrow
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Tian W, Qin J, Lian C, Yao Q, Wang X. Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH. BMC Microbiol 2022; 22:310. [PMID: 36536285 PMCID: PMC9764580 DOI: 10.1186/s12866-022-02736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Product inhibition is one of the major problems in lactic acid (LA) fermentation. Our previous study revealed that Bacillus coagulans 2-6 was an efficient producer of high-optical-purity L-LA. Its mutant strain B. coagulans Na-2 has better resistance to sodium lactate stress but the resistance mechanism has not been understood. RESULTS In this study, the whole-genome sequencing of B. coagulans Na-2 was performed and one mutant gene mfs coding for the major facilitator superfamily (MFS) protein was revealed by comparative genome analysis. Ten mutation sites were identified between the wild (MFS-2-6) and mutant (MFS-Na-2) proteins, among which T127A and N154T were predicted locating in the center of the transmembrane transport channel. The MFS-2-6 and MFS-Na-2 were expressed separately in a genetically operable strain, B. coagulans DSM1, using the genes' native promoter. The expression of the two MFS proteins had no effect and a negative effect on L-LA production when the pH was controlled at 6.0 and 7.0 by sodium hydroxide, respectively. However, 4.2 and 4.6-fold of L-LA concentrations were obtained at pH 5.0 by the strains expressing MFS-2-6 and MFS-Na-2 than that by the control strain, respectively. The intracellular pH values of the strains expressing MFS-2-6 and MFS-Na-2 were approximately 0.69 and 0.45 higher than that of the control strain during pH-controlled fermentation at 5.0. Results suggest that the expression of MFS-2-6 and MFS-Na-2 were both conducive to L-LA production at low pH, while the better performance of the latter was probably due to the more appropriate intracellular pH during the whole fermentation process. CONCLUSIONS The MFS protein identified here can improve the ability of B. coagulans to resist acidic environments and produce more L-LA at low pH. The MFS protein has an application potential in environment-friendly L-LA production.
Collapse
Affiliation(s)
- Wenzhe Tian
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Congcong Lian
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qingshou Yao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
5
|
Vu V, Farkas C, Riyad O, Bujna E, Kilin A, Sipiczki G, Sharma M, Usmani Z, Gupta VK, Nguyen QD. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. BIORESOURCE TECHNOLOGY 2022; 343:126092. [PMID: 34634465 DOI: 10.1016/j.biortech.2021.126092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
In the downstream process, the bioconversion of lignocellulosic biomass can be improved by applying a biological pretreatment procedure using microorganisms to produce hydrolytic enzymes to modify the recalcitrant structure of lignocellulose. In this study, various Bacillus strains (B. subtilis B.01162 and B.01212, B. coagulans B.01123 and B.01139, B. cereus B.00076 and B.01718, B. licheniformis B.01223 and B.01231) were evaluated for the degrading capacity of wheat bran in the submerged medium using enzymatic activities, reducing sugars and weight loss as indicators. The obtained results revealed that the B. subtilis B.01162, B. coagulans B.01123 and B. cereus B.00076 could be promising degraders for the wheat bran pretreatment. Besides, the application of their consortium (the combination of 2-3 Bacillus species) showed the positive effects on cellulose bioconversion compared with monocultures. Among them, the mixture of B. subtilis B.01162 and B. coagulans B.01123 increased significantly the cellulase, endo-glucanase, and xylanase enzyme activity resulting in accelerating the lignocellulose degradation. Our results served a very good base for the development of microbial consortium for biological pretreatment of lignocellulosic raw materials.
Collapse
Affiliation(s)
- Vi Vu
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Csilla Farkas
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Ouahab Riyad
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Erika Bujna
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Akos Kilin
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Gizella Sipiczki
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Ménesi út 45, Hungary.
| |
Collapse
|
6
|
Kristensen CS, Varming AK, Leinweber HAK, Hammer K, Lo Leggio L, Ingmer H, Kilstrup M. Characterization of the genetic switch from phage ɸ13 important for Staphylococcus aureus colonization in humans. Microbiologyopen 2021; 10:e1245. [PMID: 34713608 PMCID: PMC8516035 DOI: 10.1002/mbo3.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Temperate phages are bacterial viruses that after infection either reside integrated into a bacterial genome as prophages forming lysogens or multiply in a lytic lifecycle. The decision between lifestyles is determined by a switch involving a phage-encoded repressor, CI, and a promoter region from which lytic and lysogenic genes are divergently transcribed. Here, we investigate the switch of phage ɸ13 from the human pathogen Staphylococcus aureus. ɸ13 encodes several virulence factors and is prevalent in S. aureus strains colonizing humans. We show that the ɸ13 switch harbors a cI gene, a predicted mor (modulator of repression) gene, and three high-affinity operator sites binding CI. To quantify the decision between lytic and lysogenic lifestyle, we introduced reporter plasmids that carry the 1.3 kb switch region from ɸ13 with the lytic promoter fused to lacZ into S. aureus and Bacillus subtilis. Analysis of β-galactosidase expression indicated that decision frequency is independent of host factors. The white "lysogenic" phenotype, which relies on the expression of cI, could be switched to a stable blue "lytic" phenotype by DNA damaging agents. We have characterized lifestyle decisions of phage ɸ13, and our approach may be applied to other temperate phages encoding virulence factors in S. aureus.
Collapse
Affiliation(s)
- Camilla S. Kristensen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | - Karin Hammer
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Leila Lo Leggio
- Department of ChemistryUniversity of CopenhagenKobenhavnDenmark
| | - Hanne Ingmer
- Department of Veterinary and Animal SciencesUniversity of CopenhagenKobenhavnDenmark
| | - Mogens Kilstrup
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
7
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Sun W, Jiang B, Zhao D, Pu Z, Bao Y. Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans. Biotechnol Bioeng 2021; 118:2597-2608. [PMID: 33829485 DOI: 10.1002/bit.27780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Bacillus coagulans, a thermophilic facultative anaerobe, is a favorable chassis strain for the biosynthesis of desired products. In this study, B. coagulans was converted into an efficient malic acid producer by metabolic engineering and promoter engineering. Promoter mapping revealed that the endogenous promoter Pldh was a tandem promoter. Accordingly, a promoter library was developed, covering a wide range of relative transcription efficiencies with small increments. A reductive tricarboxylic acid pathway was established in B. coagulans by introducing the genes encoding pyruvate carboxylase (pyc), malate dehydrogenase (mdh), and phosphoenolpyruvate carboxykinase (pckA). Five promoters of various strengths within the library were screened to fine-tune the expression of pyc to improve the biosynthesis of malic acid. In addition, genes involved in the competitive metabolic pathways were deleted to focus the substrate and energy flux toward malic acid. Dual-phase fed-batch fermentation was performed to increase the biomass of the strain, further improving the titer of malic acid to 25.5 g/L, with a conversion rate of 0.3 g/g glucose. Our study is a pioneer research using promoter engineering and genetically modified B. coagulans for the biosynthesis of malic acid, providing an effective approach for the industrialized production of desired products using B. coagulans.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.,School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| |
Collapse
|
9
|
Mohanraju P, Mougiakos I, Albers J, Mabuchi M, Fuchs RT, Curcuru JL, van Kranenburg R, Robb GB, van der Oost J. Development of a Cas12a-Based Genome Editing Tool for Moderate Thermophiles. CRISPR J 2021; 4:82-91. [PMID: 33538626 DOI: 10.1089/crispr.2020.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of CRISPR-Cas12a nucleases to function reliably in a wide range of species has been key to their rapid adoption as genome engineering tools. However, so far, Cas12a nucleases have been limited for use in organisms with growth temperatures up to 37 °C. Here, we biochemically characterize three Cas12a orthologs for their temperature stability and activity. We demonstrate that Francisella novicida Cas12a (FnCas12a) has great biochemical potential for applications that require enhanced stability, including use at temperatures >37°C. Furthermore, by employing the moderate thermophilic bacterium Bacillus smithii as our experimental platform, we demonstrate that FnCas12a is active in vivo at temperatures up to 43°C. Subsequently, we develop a single-plasmid FnCas12a-based genome editing tool for B. smithii, combining the FnCas12a targeting system with plasmid-borne homologous recombination (HR) templates that carry the desired modifications. Culturing of B. smithii cells at 45°C allows for the uninhibited realization of the HR-based editing step, while a subsequent culturing step at reduced temperatures induces the efficient counterselection of the non-edited cells by FnCas12a. The developed gene-editing tool yields gene-knockout mutants within 3 days, and does not require tightly controllable expression of FnCas12a to achieve high editing efficiencies, indicating its potential for other (thermophilic) bacteria and archaea, including those with minimal genetic toolboxes. Altogether, our findings provide new biochemical insights into three widely used Cas12a nucleases, and establish the first Cas12a-based bacterial genome editing tools for moderate thermophilic microorganisms.
Collapse
Affiliation(s)
- Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Justin Albers
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Ryan T Fuchs
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.,Corbion, Gorinchem, The Netherlands
| | - G Brett Robb
- New England Biolabs, Ipswich, Massachusetts, USA
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Elucidating the Role and Regulation of a Lactate Permease as Lactate Transporter in Bacillus coagulans DSM1. Appl Environ Microbiol 2019; 85:AEM.00672-19. [PMID: 31101607 DOI: 10.1128/aem.00672-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023] Open
Abstract
A key feature of Bacillus coagulans is its ability to produce l-lactate via homofermentative metabolism. A putative lactate permease-encoding gene (lutP) and the gene encoding its regulator (lutR) were identified in one operon in B. coagulans strains. LutP orthologs are highly conserved and located adjacent to the gene cluster related to lactate utilization in most lactate-utilizing microorganisms. However, no lactate utilization genes were found adjacent to lutP in all sequenced B. coagulans strains. The stand-alone presence of lutP in l-lactate producers indicates that it may have functions in lactate production. In this study, B. coagulans DSM1 was used as a representative strain, and the critical roles of LutP and its regulation were described. Transport property assays showed that LutP was essential for lactate uptake. Its regulator LutR directly interacted with the lutP-lutR intergenic region, and lutP transcription was activated by l-lactate via regulation by LutR. A biolayer interferometry assay further confirmed that LutR bound to an 11-bp inverted repeat in the intergenic region, and lutP transcription began when the binding of LutR to the lutP upstream sequence was inhibited. We conclusively showed that lutP encodes a functional lactate permease in B. coagulans IMPORTANCE Lactate-utilizing strains require lactate permease (LutP) to transport lactate into cells. Bacillus coagulans LutP is a previously uncharacterized lactate permease with no lactate utilization genes situated either adjacent to or remotely from it. In this study, an active lactate permease in an l-lactate producer, B. coagulans DSM1, was identified. Lactate supplementation regulated the expression of lactate permease. This study presents physiological evidence of the presence of a lactate transporter in B. coagulans Our findings indicate a potential target for the engineering of strains in order to improve their fermentation characteristics.
Collapse
|
11
|
Zheng Z, Jiang T, Zou L, Ouyang S, Zhou J, Lin X, He Q, Wang L, Yu B, Xu H, Ouyang J. Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:320. [PMID: 30519284 PMCID: PMC6271610 DOI: 10.1186/s13068-018-1323-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/23/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The use of inedible lignocellulosic biomasses for biomanufacturing provides important environmental and economic benefits for society. Efficient co-utilization of lignocellulosic biomass-derived sugars, primarily glucose and xylose, is critical for the viability of lignocellulosic biorefineries. However, the phenomenon of glucose repression prevents co-utilization of both glucose and xylose in cellulosic hydrolysates. RESULTS To circumvent glucose repression, co-utilization of cellobiose and xylose by Bacillus coagulans NL01 was investigated. During co-fermentation of cellobiose and xylose, B. coagulans NL01 simultaneously consumed the sugar mixtures and exhibited an improved lactic acid yield compared with co-fermentation of glucose and xylose. Moreover, the cellobiose metabolism of B. coagulans NL01 was investigated for the first time. Based on comparative genomic analysis, two gene clusters that encode two different operons of the cellobiose-specific phosphoenolpyruvate-dependent phosphotransferase system (assigned as CELO1 and CELO2) were identified. For CELO1, five genes were arranged as celA (encoding EIIAcel), celB (encoding EIIBcel), celC (encoding EIICcel), pbgl (encoding 6-phospho-β-glucosidase), and celR (encoding a transcriptional regulator), and these genes were found to be ubiquitous in different B. coagulans strains. Based on gene knockout results, CELO1 was confirmed to be responsible for the transport and assimilation of cellobiose. For CELO2, the five genes were arranged as celR, celB, celA, celX (encoding DUF871 domain-containing protein), and celC, and these genes were only found in some B. coagulans strains. However, through a comparison of cellobiose fermentation by NL01 and DSM1 that only possess CELO1, it was observed that CELO2 might also play an important role in the utilization of cellobiose in vivo despite the fact that no pbgl gene was found. When CELO1 or CELO2 was expressed in Escherichia coli, the recombinant strain exhibited distinct cellobiose uptake and consumption. CONCLUSIONS This study demonstrated the cellobiose-assimilating pathway of B. coagulans and provided a new co-utilization strategy of cellobiose and xylose to overcome the obstacles that result from glucose repression in a biorefinery system.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Ting Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Lihua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Shuiping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Xi Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Qin He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
12
|
Drejer EB, Hakvåg S, Irla M, Brautaset T. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae. Microorganisms 2018; 6:microorganisms6020042. [PMID: 29748477 PMCID: PMC6027425 DOI: 10.3390/microorganisms6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/17/2023] Open
Abstract
Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B.methanolicus, B.coagulans, B.smithii, B.licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.
Collapse
Affiliation(s)
- Eivind B Drejer
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
13
|
Frenzel E, Legebeke J, van Stralen A, van Kranenburg R, Kuipers OP. In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:8. [PMID: 29371884 PMCID: PMC5771013 DOI: 10.1186/s13068-017-1008-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Fluorescent reporter proteins (FP) have become an indispensable tool for the optimization of microbial cell factories and in synthetic biology per se. The applicability of the currently available FPs is, however, constrained by species-dependent performance and misfolding at elevated temperatures. To obtain functional reporters for thermophilic, biotechnologically important bacteria such as Parageobacillus thermoglucosidasius, an in vivo screening approach based on a mutational library of superfolder GFP was applied. RESULTS Flow cytometry-based benchmarking of a set of GFPs, sfGFPs and species-specific codon-optimized variants revealed that none of the proteins was satisfyingly detectable in P. thermoglucosidasius at its optimal growth temperature of 60 °C. An undirected mutagenesis approach coupled to fluorescence-activated cell sorting allowed the isolation of sfGFP variants that were extremely well expressed in the chassis background at 60 °C. Notably, a few nucleotide substitutions, including silent mutations, significantly improved the functionality and brightness. The best mutant sfGFP(N39D/A179A) showed an 885-fold enhanced mean fluorescence intensity (MFI) at 60 °C and is the most reliable reporter protein with respect to cell-to-cell variation and signal intensity reported so far. The in vitro spectral and thermostability properties were unaltered as compared to the parental sfGFP protein, strongly indicating that the combination of the amino acid exchange and an altered translation or folding speed, or protection from degradation, contribute to the strongly improved in vivo performance. Furthermore, sfGFP(N39D/A179A) and the newly developed cyan and yellow derivatives were successfully used for labeling several industrially relevant thermophilic bacilli, thus proving their broad applicability. CONCLUSIONS This study illustrates the power of in vivo isolation of thermostable proteins to obtain reporters for highly efficient fluorescence labeling. Successful expression in a variety of thermophilic bacteria proved that the novel FPs are highly suitable for imaging and flow cytometry-based studies. This enables a reliable cell tracking and single-cell-based real-time monitoring of biological processes that are of industrial and biotechnological interest.
Collapse
Affiliation(s)
- Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jelmer Legebeke
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Atze van Stralen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkselsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Zhang C, Zhou C, Assavasirijinda N, Yu B, Wang L, Ma Y. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain. Microb Cell Fact 2017; 16:213. [PMID: 29178877 PMCID: PMC5702109 DOI: 10.1186/s12934-017-0827-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
Background Optically pure d-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on d-lactic acid fermentation compared with the extensive investigation of l-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure d-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as l-lactic acid producers. Results Thermophilic Bacillus coagulans is an excellent producer of l-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two l-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible l-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native d-lactate dehydrogenase was too low to support efficient d-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of d-lactic acid was constructed by deletion of two l-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the d-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. Conclusions This genetically engineered strain produced only d-lactic acid under non-sterilized condition, and finally 145 g/L of d-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure d-lactic acid titer produced by a thermophilic strain. Electronic supplementary material The online version of this article (10.1186/s12934-017-0827-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caili Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Nilnate Assavasirijinda
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
15
|
Guan ZB, Wang KQ, Shui Y, Liao XR. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus. J Basic Microbiol 2017; 57:1065-1068. [PMID: 29052235 DOI: 10.1002/jobm.201700370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 11/07/2022]
Abstract
In this study, we established a Cre/loxP mutant recombination system (Cre/lox71-66 system) for markerless gene deletion to facilitate our follow-up rational genetic engineering to the strain Bacillus pumilus W3. This modified method uses two mutant loxP sites, which after recombination creates a double-mutant loxP site that is poorly recognized by Cre recombinase, facilitating multiple gene deletions in a single genetic background. Two selected genes, cotA and sigF, were continuously knocked out and verified at different levels using this method. This method is simple and efficient and can be easily implemented for multiple gene deletions in B. pumilus.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Kai-Qiang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yan Shui
- The Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P. R. China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine. J Bacteriol 2017; 199:JB.00204-17. [PMID: 28583948 DOI: 10.1128/jb.00204-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death.IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they occur outside laboratory conditions. Here, we present a screening method suitable for the identification of multispecies interactions and showcase L. fusiformis as a soil bacterium that is able to live alongside B. subtilis and modify the architecture of its biofilms.
Collapse
|
17
|
Togawa Y, Nunoshiba T, Hiratsu K. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus. Mol Genet Genomics 2017; 293:277-291. [PMID: 28840320 DOI: 10.1007/s00438-017-1361-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/20/2017] [Indexed: 12/01/2022]
Abstract
Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.
Collapse
Affiliation(s)
- Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
18
|
Mougiakos I, Bosma EF, Weenink K, Vossen E, Goijvaerts K, van der Oost J, van Kranenburg R. Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9. ACS Synth Biol 2017; 6:849-861. [PMID: 28146359 PMCID: PMC5440800 DOI: 10.1021/acssynbio.6b00339] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes Cas9 (spCas9)-based genome editing to a moderate thermophile, i.e., Bacillus smithii, including a gene deletion, gene knockout via insertion of premature stop codons, and gene insertion. We show that spCas9 is inactive in vivo above 42 °C, and we employ the wide temperature growth range of B. smithii as an induction system for spCas9 expression. Homologous recombination with plasmid-borne editing templates is performed at 45-55 °C, when spCas9 is inactive. Subsequent transfer to 37 °C allows for counterselection through production of active spCas9, which introduces lethal double-stranded DNA breaks to the nonedited cells. The developed method takes 4 days with 90, 100, and 20% efficiencies for gene deletion, knockout, and insertion, respectively. The major advantage of our system is the limited requirement for genetic parts: only one plasmid, one selectable marker, and a promoter are needed, and the promoter does not need to be inducible or well-characterized. Hence, it can be easily applied for genome editing purposes in both mesophilic and thermophilic nonmodel organisms with a limited genetic toolbox and ability to grow at, or tolerate, temperatures of 37 and at or above 42 °C.
Collapse
Affiliation(s)
- Ioannis Mougiakos
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Elleke F. Bosma
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Koen Weenink
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Eric Vossen
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Kirsten Goijvaerts
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - John van der Oost
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk
46, 4206 AC Gorinchem, The Netherlands
| |
Collapse
|
19
|
Aulitto M, Fusco S, Bartolucci S, Franzén CJ, Contursi P. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:210. [PMID: 28904563 PMCID: PMC5590179 DOI: 10.1186/s13068-017-0896-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. RESULTS A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans, named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. CONCLUSIONS The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto employed for the depolymerisation of lignocellulosic biomasses to fermentable sugars. Moreover, the robustness of B. coagulans MA-13 is a desirable trait, given the presence of microbial growth inhibitors in the pre-treated biomass hydrolysate.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Salvatore Fusco
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
20
|
Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans. Sci Rep 2016; 6:37916. [PMID: 27885267 PMCID: PMC5122838 DOI: 10.1038/srep37916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.
Collapse
|
21
|
Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production. Front Microbiol 2016; 7:1481. [PMID: 27713731 PMCID: PMC5031790 DOI: 10.3389/fmicb.2016.01481] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Collapse
Affiliation(s)
- Marta Irla
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tonje M B Heggeset
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Lidia Paul
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tone Haugen
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Simone B Le
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology and NanomedicineTrondheim, Norway; Department of Biotechnology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| |
Collapse
|
22
|
Poudel P, Tashiro Y, Sakai K. New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects. Biosci Biotechnol Biochem 2016; 80:642-54. [DOI: 10.1080/09168451.2015.1095069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Members of the genus Bacillus are considered to be both, among the best studied and most commonly used bacteria as well as the most still unexplored and the most wide-applicable potent bacteria because novel Bacillus strains are continuously being isolated and used in various areas. Production of optically pure l-lactic acid (l-LA), a feedstock for bioplastic synthesis, from renewable resources has recently attracted attention as a valuable application of Bacillus strains. l-LA fermentation by other producers, including lactic acid bacteria and Rhizopus strains (fungi) has already been addressed in several reviews. However, despite the advantages of l-LA fermentation by Bacillus strains, including its high growth rate, utilization of various carbon sources, tolerance to high temperature, and growth in simple nutritional conditions, it has not been reviewed. This review article discusses new findings on LA-producing Bacillus strains and compares them to other producers. The future prospects for LA-producing Bacillus strains are also discussed.
Collapse
Affiliation(s)
- Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Bosma EF, van de Weijer AHP, van der Vlist L, de Vos WM, van der Oost J, van Kranenburg R. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Microb Cell Fact 2015; 14:99. [PMID: 26148486 PMCID: PMC4494709 DOI: 10.1186/s12934-015-0286-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/18/2015] [Indexed: 01/22/2023] Open
Abstract
Background Microbial conversion of biomass to fuels or chemicals is an attractive alternative for fossil-based fuels and chemicals. Thermophilic microorganisms have several operational advantages as a production host over mesophilic organisms, such as low cooling costs, reduced contamination risks and a process temperature matching that of commercial hydrolytic enzymes, enabling simultaneous saccharification and fermentation at higher efficiencies and with less enzymes. However, genetic tools for biotechnologically relevant thermophiles are still in their infancy. In this study we developed a markerless gene deletion method for the thermophile Bacillus smithii and we report the first metabolic engineering of this species as a potential platform organism. Results Clean deletions of the ldhL gene were made in two B. smithii strains (DSM 4216T and compost isolate ET 138) by homologous recombination. Whereas both wild-type strains produced mainly l-lactate, deletion of the ldhL gene blocked l-lactate production and caused impaired anaerobic growth and acid production. To facilitate the mutagenesis process, we established a counter-selection system for efficient plasmid removal based on lacZ-mediated X-gal toxicity. This counter-selection system was applied to construct a sporulation-deficient B. smithii ΔldhL ΔsigF mutant strain. Next, we demonstrated that the system can be used repetitively by creating B. smithii triple mutant strain ET 138 ΔldhL ΔsigF ΔpdhA, from which also the gene encoding the α-subunit of the E1 component of the pyruvate dehydrogenase complex is deleted. This triple mutant strain produced no acetate and is auxotrophic for acetate, indicating that pyruvate dehydrogenase is the major route from pyruvate to acetyl-CoA. Conclusions In this study, we developed a markerless gene deletion method including a counter-selection system for thermophilic B. smithii, constituting the first report of metabolic engineering in this species. The described markerless gene deletion system paves the way for more extensive metabolic engineering of B. smithii. This enables the development of this species into a platform organism and provides tools for studying its metabolism, which appears to be different from its close relatives such as B. coagulans and other bacilli. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elleke F Bosma
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.
| | - Antonius H P van de Weijer
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.
| | - Laurens van der Vlist
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands.
| |
Collapse
|
24
|
Mukherjee A, Barnett MA, Venkatesh V, Verma S, Sadler PJ. Human serum transferrin fibrils: nanomineralisation in bacteria and destruction of red blood cells. Chembiochem 2015; 16:149-55. [PMID: 25476866 PMCID: PMC4371634 DOI: 10.1002/cbic.201402458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/15/2022]
Abstract
Fibrils formed by human serum transferrin [(1-3 μM) apo-Tf, partially iron-saturated (Fe0.6 -Tf) and holo-Tf (Fe2 -Tf) forms], from dilute bicarbonate solutions, were deposited on formvar surfaces and studied by electron microscopy. We observed that possible bacterial contamination appears to give rise to long, pea-pod-like (PPL) structures for Fe2 -Tf, attributable to the formation of polyhydroxybutyrate (PHB) storage granules, under the nutrient-limiting conditions used. These PPL structures contained periodic nanomineralisation sites susceptible to uranyl stain. Extended incubation of transferrin solutions (about four days) gave rise to extensive transferrin fibril structures. Optical microscopy and AFM studies showed that red blood cells (RBCs) readily adhere to these fibrils. Moreover, the fibrils appear to penetrate RBC membranes and to induce rapid cell destruction (within about 5 h). It is speculated that in situations in vivo where transferrin fibrils can form, such interactions might have adverse physiological consequences, and further studies could aid the understanding of related pathological events.
Collapse
Affiliation(s)
- Arindam Mukherjee
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| | - Mark A Barnett
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology KanpurKanpur 208016 (UP) (India)
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology KanpurKanpur 208016 (UP) (India)
| | - Peter J Sadler
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| |
Collapse
|
25
|
Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst. Appl Environ Microbiol 2015; 81:1874-83. [PMID: 25556192 DOI: 10.1128/aem.03640-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216(T) and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 10(3) colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals.
Collapse
|
26
|
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 2014; 99:535-51. [PMID: 25431011 DOI: 10.1007/s00253-014-6224-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 01/28/2023]
Abstract
Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.
Collapse
|
27
|
Dong H, Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 2014; 13:63. [PMID: 24885003 PMCID: PMC4030025 DOI: 10.1186/1475-2859-13-63] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species.
Collapse
Affiliation(s)
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
28
|
Su F, Xu P. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 2014; 4:3926. [PMID: 24473268 PMCID: PMC3905273 DOI: 10.1038/srep03926] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022] Open
Abstract
Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.
Collapse
Affiliation(s)
- Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Kovács ÁT, Eckhardt TH, van Kranenburg R, Kuipers OP. Functional analysis of the ComK protein of Bacillus coagulans. PLoS One 2013; 8:e53471. [PMID: 23301076 PMCID: PMC3536758 DOI: 10.1371/journal.pone.0053471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Collapse
Affiliation(s)
- Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tom H. Eckhardt
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Williams BS, Isokpehi RD, Mbah AN, Hollman AL, Bernard CO, Simmons SS, Ayensu WK, Garner BL. Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium. Bioinform Biol Insights 2012; 6:275-86. [PMID: 23226010 PMCID: PMC3511254 DOI: 10.4137/bbi.s7977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional research on the USP-Sir2 transcriptional unit of B. megaterium could help explain mammalian acetate metabolism in glucose-limiting conditions such as caloric restriction. Finally, the deep-rooted position of B. megaterium in the phylogeny of Bacillus species makes the investigation of the functional coupling acetate utilization and stress response compelling.
Collapse
Affiliation(s)
- Baraka S Williams
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA. ; Department of Biology, Division of Natural Science, Tougaloo College, 500 West County Line Road, Tougaloo, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 2012; 168:2387-97. [DOI: 10.1007/s12010-012-9944-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/09/2012] [Indexed: 11/27/2022]
|
32
|
Rhee MS, Moritz BE, Xie G, Glavina del Rio T, Dalin E, Tice H, Bruce D, Goodwin L, Chertkov O, Brettin T, Han C, Detter C, Pitluck S, Land ML, Patel M, Ou M, Harbrucker R, Ingram LO, Shanmugam KT. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1. Stand Genomic Sci 2011; 5:331-40. [PMID: 22675583 PMCID: PMC3368420 DOI: 10.4056/sigs.2365342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed.
Collapse
Affiliation(s)
- Mun Su Rhee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Brélan E. Moritz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | | | - E. Dalin
- Joint Genome Institute, Walnut Creek, CA, USA
| | - H. Tice
- Joint Genome Institute, Walnut Creek, CA, USA
| | - D. Bruce
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | - L. Goodwin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | - O. Chertkov
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | - T. Brettin
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - C. Han
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | - C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Joint Genome Institute, Walnut Creek, CA, USA
| | - S. Pitluck
- Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Milind Patel
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Mark Ou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Roberta Harbrucker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Lonnie O. Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - K. T. Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Corresponding author:
| |
Collapse
|