1
|
Guo T, Zhang Q, Wang X, Xu X, Wang Y, Wei L, Li N, Liu H, Hu L, Zhao N, Xu S. Targeted and untargeted metabolomics reveals meat quality in grazing yak during different phenology periods on the Qinghai-Tibetan Plateau. Food Chem 2024; 447:138855. [PMID: 38520902 DOI: 10.1016/j.foodchem.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Yak meat is more popular among consumers because of its high nutritional value, but little attention has been paid to its meat quality, which is affected by different phenology periods grass. We hypothesized that seasonal variations in grass composition influenced the ruminal bacteria community, and eventually affected the meat quality of yaks. This study aims to investigate the relationship of meat quality in grazing yak as well as the key rumen bacteria using targeted and untargeted metabolomics and 16S rRNA during different phenology periods. The main three altered metabolic pathways in grazing yak, including amino acids biosynthesis, glutathione metabolism, and fatty acids biosynthesis, were found in the grass period (GP) group compared to the regreen period (RP) and hay period (HP) groups. The GP group had higher concentrations of flavor amino acids (FAA), polyunsaturated fatty acids (PUFA), and a lower ratio of n-6/n-3 compared with the RP group. Correlation analysis results showed that Rikenellaceae_RC9_gut_group was positively correlated with fatty acids and lipid metabolites, which might be involved in lipid metabolism. Pediococcus had a positive correlation with biological peptides, which could be involved in the metabolism of bioactive compounds. In conclusion, grass in different phenology periods was associated with modified amino acids and fatty acids composition of yak meat as well as altered regulation of biological pathways, which was correlated with changes in rumen bacterial communities.
Collapse
Affiliation(s)
- Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xianli Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
2
|
Tzora A, Nelli A, Kritikou AS, Katsarou D, Giannenas I, Lagkouvardos I, Thomaidis NS, Skoufos I. The "Crosstalk" between Microbiota and Metabolomic Profile of Kefalograviera Cheese after the Innovative Feeding Strategy of Dairy Sheep by Omega-3 Fatty Acids. Foods 2022; 11:3164. [PMID: 37430914 PMCID: PMC9601511 DOI: 10.3390/foods11203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the effects of two different feeding systems, a control or a flaxseed and lupin diet (experimental), for a sheep flock, on the microbiota and metabolome of Kefalograviera cheese samples produced by their milk. In particular, the microbiota present in Kefalograviera cheese samples was analyzed using 16S rRNA gene sequencing, while ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was applied to investigate the chemical profile of the cheeses, considering the different feeding systems applied. The metagenomic profile was found to be altered by the experimental feeding system and significantly correlated to specific cheese metabolites, with Streptococcaceae and Lactobacillaceae establishing positive and negative correlations with the discriminant metabolites. Overall, more than 120 features were annotated and identified with high confidence level across the samples while most of them belonged to specific chemical classes. Characteristic analytes detected in different concentrations in the experimental cheese samples including arabinose, dulcitol, hypoxanthine, itaconic acid, L-arginine, L-glutamine and succinic acid. Therefore, taken together, our results provide an extensive foodomics approach for Kefalograviera cheese samples from different feeding regimes, investigating the metabolomic and metagenomic biomarkers that could be used to foresee, improve, and control cheese ripening outcomes, demonstrating the quality of the experimental Kefalograviera cheese.
Collapse
Affiliation(s)
- Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Danai Katsarou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ilias Giannenas
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| |
Collapse
|
3
|
Oliveira FS, da Silva Rodrigues R, de Carvalho AF, Nero LA. Genomic Analyses of Pediococcus pentosaceus ST65ACC, a Bacteriocinogenic Strain Isolated from Artisanal Raw-Milk Cheese. Probiotics Antimicrob Proteins 2022; 15:630-645. [PMID: 34984631 DOI: 10.1007/s12602-021-09894-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Pediococcus pentosaceus ST65ACC was obtained from a Brazilian artisanal cheese (BAC) and characterized as bacteriocinogenic. This strain presented beneficial properties in previous studies, indicating its potential as a probiotic candidate. In this study, we aimed to carry out a genetic characterization based on whole-genome sequencing (WGS), including taxonomy, biotechnological properties, bacteriocin clusters and safety-related genes. WGS was performed using the Illumina MiSeq platform and the genome was annotated with the Prokaryotic Genome Annotation (Prokka). P. pentosaceus ST65ACC taxonomy was investigated and bacteriocin genes clusters were identified by BAGEL4, metabolic pathways were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and safety-related genes were checked. P. pentosaceus ST65ACC had a total draft genome size of 1,933,194 bp with a GC content of 37.00%, and encoded 1950 protein coding sequences (CDSs), 6 rRNA, 55 tRNA, 1 tmRNA and no plasmids were detected. The analysis revealed absence of a CRISPR/Cas system, bacteriocin gene clusters for pediocin PA-1/AcH and penocin-A were identified. Genes related to beneficial properties, such as stress adaptation genes and adhesion genes, were identified. Furthermore, genes related to biogenic amines and virulence-related genes were not detected. Genes related to antibiotic resistance were identified, but not in prophage regions. Based on the obtained results, the beneficial potential of P. pentosaceus ST65ACC was confirmed, allowing its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Rafaela da Silva Rodrigues
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.
| |
Collapse
|
4
|
Zhang Q, Guo WL, Chen GM, Qian M, Han JZ, Lv XC, Chen LJ, Rao PF, Ai LZ, Ni L. Pediococcus acidilactici FZU106 alleviates high-fat diet-induced lipid metabolism disorder in association with the modulation of intestinal microbiota in hyperlipidemic rats. Curr Res Food Sci 2022; 5:775-788. [PMID: 35520273 PMCID: PMC9064835 DOI: 10.1016/j.crfs.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics have been proved to have beneficial effects in improving hyperlipidemia. The purpose of the current research was to investigate the ameliorative effects of Pediococcus acidilactici FZU106, isolated from the traditional brewing of Hongqu rice wine, on lipid metabolism and intestinal microbiota in high-fat diet (HFD)-induced hyperlipidemic rats. Results showed that P. acidilactici FZU106 intervention obviously inhibited the abnormal increase of body weight, ameliorated serum and liver biochemical parameters related to lipid metabolism and oxidative stress. Histopathological evaluation also showed that P. acidilactici FZU106 could significantly reduce the excessive lipid accumulation in liver caused by HFD-feeding. Furthermore, P. acidilactici FZU106 intervention significantly increased the short-chain fatty acids (SCFAs) levels in HFD-fed rats, which was closely related to the changes of intestinal microbial composition and metabolism. Intestinal microbiota profiling by high-throughput sequencing demonstrated that P. acidilactici FZU106 intervention evidently increased the proportion of Butyricicoccus, Pediococcus, Rothia, Globicatella and [Eubacterium]_coprostanoligenes_group, and decreased the proportion of Corynebacterium_1, Psychrobacter, Oscillospira, Facklamia, Pseudogracilibacillus, Clostridium_innocuum_group, Enteractinococcus and Erysipelothrix in HFD-fed rats. Additionally, P. acidilactici FZU106 significantly regulated the mRNA levels of liver genes (including CD36, CYP7A1, SREBP-1c, BSEP, LDLr and HMGCR) involved in lipid metabolism and bile acid homeostasis. Therefore, these findings support the possibility that P. acidilactici FZU106 has the potential to reduce the disturbance of lipid metabolism by regulating intestinal microflora and liver gene expression profiles. Pediococcus acidilactici FZU106 protects against hyperlipidemia. Pediococcus acidilactici FZU106 regulates serum and liver lipid levels. Pediococcus acidilactici FZU106 regulates intestinal microbial composition. Pediococcus acidilactici FZU106 regulates lipid metabolism related genes.
Collapse
|
5
|
Zhao J, Niu C, Du S, Liu C, Zheng F, Wang J, Li Q. Reduction of biogenic amines formation during soybean paste fermentation by using Staphylococcus carnosus M43 and Pediococcus acidilactici M28 as starter culture. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Dolci P, Ferrocino I, Giordano M, Pramotton R, Vernetti-Prot L, Zenato S, Barmaz A. Impact of Lactococcus lactis as starter culture on microbiota and metabolome profile of an Italian raw milk cheese. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
8
|
Metabolism of Lactobacillus sakei Chr82 in the Presence of Different Amounts of Fermentable Sugars. Foods 2020; 9:foods9060720. [PMID: 32498333 PMCID: PMC7353496 DOI: 10.3390/foods9060720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Lactobacillus sakei is widely used as a starter culture in fermented sausages since it is well adapted to meat environments and able to maintain high viability thanks to secondary pathways activated when hexoses are depleted (i.e., metabolism of pentoses and amino acids). In this study, a commercial strain of L. sakei was inoculated in a defined medium with ribose or glucose as the carbon source, at optimal or reduced concentrations, to evaluate its different physiological and metabolic responses in relation to different growth conditions. The results obtained with different approaches (HPLC, 1H-NMR, flow cytometry) evidenced different growth performances, amino acid consumptions and physiological states of cells in relation to the carbon source as an active response to harsh conditions. As expected, higher concentrations of sugars induced higher growth performances and the accumulation of organic acids. The low sugars amount induced the presence of dead cells, while injured cells increased with ribose. Arginine was the main amino acid depleted, especially in the presence of higher ribose, and resulted in the production of ornithine. Moreover, the 1H-NMR analysis evidenced a higher consumption of serine at the optimal sugars concentration (pyruvate production). This information can be helpful to optimize the use of these species in the industrial production of fermented sausages.
Collapse
|
9
|
Tagliazucchi D, Baldaccini A, Martini S, Bianchi A, Pizzamiglio V, Solieri L. Cultivable non-starter lactobacilli from ripened Parmigiano Reggiano cheeses with different salt content and their potential to release anti-hypertensive peptides. Int J Food Microbiol 2020; 330:108688. [PMID: 32497940 DOI: 10.1016/j.ijfoodmicro.2020.108688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 01/19/2023]
Abstract
The impact of salt and fat intake on human health drives the consumer's attention towards dairy food with reduced salt and fat contents. How changes in salt and fat content modulate dairy LAB population and the associated proteolytic activities have been poorly studied. Here, non-starter LAB populations from 12 Parmigiano Reggiano (PR) cheeses (12-month ripened), clustered in low salt and fat content (LL-PR) and high salt and fat content (HH-PR) groups, were investigated and identified at specie-level with molecular assays. Lactobacillus rhamnosus was dominant in HH-PR samples, whereas Lactobacillus paracasei in LL-PR samples. (GTG)5 rep-PCR analysis discriminated 11 and 12 biotypes for L. rhamnosus and L. paracasei isolates, respectively. Screening for proteolytic activity identified L. rhamnosus strains more proteolytic than L. paracasei, and, within L. rhamnosus species, HH-PR strains were generally more proteolytic than LL-PR strains. Two L. rhamnosus representatives, namely strain 0503 from LL-PR and strain 2006 from HH-PR, were functionally characterized in cow milk fermentation assay. HH-PR strain 2006 overcame LL-PR strain 0503 in acidification performance, leading to a fermented milk with higher angiotensin I-converting enzyme inhibitory and antioxidant activities. L. rhamnosus 2006 was more prone to release VPP, while L. rhamnosus 0503 released higher amount of IPP. This study provides evidences that salt/fat content affects NSLAB cultivable fraction and the associated proteolytic ability resulting in a complex occurrence of bioactive peptides featuring health-promoting properties.
Collapse
Affiliation(s)
- Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Andrea Baldaccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Aldo Bianchi
- Consorzio del Formaggio Parmigiano Reggiano, via J.F. Kennedy 18, 42124 Reggio Emilia, Italy
| | - Valentina Pizzamiglio
- Consorzio del Formaggio Parmigiano Reggiano, via J.F. Kennedy 18, 42124 Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| |
Collapse
|
10
|
Wenger A, Schmidt RS, Portmann R, Roetschi A, Eugster E, Weisskopf L, Irmler S. Identification of a species-specific aminotransferase in Pediococcus acidilactici capable of forming α-aminobutyrate. AMB Express 2020; 10:100. [PMID: 32472439 PMCID: PMC7260336 DOI: 10.1186/s13568-020-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022] Open
Abstract
During cheese ripening, the bacterial strain Pediococcus acidilactici FAM18098 produces the non-proteinogenic amino acid, α-aminobutyrate (AABA). The metabolic processes that lead to the biosynthesis of this compound are unknown. In this study, 10 P. acidilactici, including FAM18098 and nine Pediococcus pentosaceus strains, were screened for their ability to produce AABA. All P. acidilactici strains produced AABA, whereas the P. pentosaceus strains did not. The genomes of the pediococcal strains were sequenced and searched for genes encoding aminotransferases to test the hypothesis that AABA could result from the transamination of α-ketobutyrate. A GenBank and KEGG database search revealed the presence of a species-specific aminotransferase in P. acidilactici. The gene was cloned and its gene product was produced as a His-tagged fusion protein in Escherichia coli to determine the substrate specificity of this enzyme. The purified recombinant protein showed aminotransferase activity at pH 5.5. It catalyzed the transfer of the amino group from leucine, methionine, AABA, alanine, cysteine, and phenylalanine to the amino group acceptor α-ketoglutarate. Αlpha-ketobutyrate could replace α-ketoglutarate as an amino group acceptor. In this case, AABA was produced at significantly higher levels than glutamate. The results of this study show that P. acidilactici possesses a novel aminotransferase that might play a role in cheese biochemistry and has the potential to be used in biotechnological processes for the production of AABA.
Collapse
Affiliation(s)
- Alexander Wenger
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.,Department of Biology, University of Fribourg, Rue Albert-Gockel 3, 1700, Fribourg, Switzerland
| | - Remo S Schmidt
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | | | - Elisabeth Eugster
- Bern University of Applied Sciences, School of Agricultural, Forest, and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, 1700, Fribourg, Switzerland
| | - Stefan Irmler
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| |
Collapse
|
11
|
Musatti A, Cavicchioli D, Mapelli C, Bertoni D, Hogenboom JA, Pellegrino L, Rollini M. From Cheese Whey Permeate to Sakacin A: A Circular Economy Approach for the Food-Grade Biotechnological Production of an Anti- Listeria Bacteriocin. Biomolecules 2020; 10:biom10040597. [PMID: 32290606 PMCID: PMC7226247 DOI: 10.3390/biom10040597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cheese Whey Permeate (CWP) is the by-product of whey ultrafiltration for protein recovery. It is highly perishable with substantial disposal costs and has serious environmental impact. The aim of the present study was to develop a novel and cheap CWP-based culture medium for Lactobacillus sakei to produce the food-grade sakacin A, a bacteriocin exhibiting a specific antilisterial activity. Growth conditions, nutrient supplementation and bacteriocin yield were optimized through an experimental design in which the standard medium de Man, Rogosa and Sharpe (MRS) was taken as benchmark. The most convenient formulation was liquid CWP supplemented with meat extract (4 g/L) and yeast extract (8 g/L). Although, arginine (0.5 g/L) among free amino acids was depleted in all conditions, its supplementation did not increase process yield. The results demonstrate the feasibility of producing sakacin A from CWP. Cost of the novel medium was 1.53 €/L and that of obtaining sakacin A 5.67 €/106 AU, with a significant 70% reduction compared to the corresponding costs with MRS (5.40 €/L, 18.00 €/106 AU). Taking into account that the limited use of bacteriocins for food application is mainly due to the high production cost, the obtained reduction may contribute to widening the range of applications of sakacin A as antilisterial agent.
Collapse
Affiliation(s)
- Alida Musatti
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
- Correspondence: ; Tel.: +39-025-031-9150
| | - Daniele Cavicchioli
- ESP, Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy; (D.C.); (D.B.)
| | - Chiara Mapelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Danilo Bertoni
- ESP, Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy; (D.C.); (D.B.)
| | - Johannes A. Hogenboom
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Luisa Pellegrino
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| |
Collapse
|
12
|
Complete Genome Sequence of Pediococcus pentosaceus Strain GDIAS 001. Microbiol Resour Announc 2020; 9:9/12/e01586-19. [PMID: 32193246 PMCID: PMC7082465 DOI: 10.1128/mra.01586-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pediococcus pentosaceus strain GDIAS 001 was isolated from a tapioca sample in Guangzou, China. The genome of GDIAS 001 was assembled using single-molecule real-time (SMRT) sequencing, and it contains 1 chromosome of 1.83 Mbp and 1,835 protein-coding genes, 71 RNA genes, and 56 tRNA genes. Pediococcus pentosaceus strain GDIAS 001 was isolated from a tapioca sample in Guangzou, China. The genome of GDIAS 001 was assembled using single-molecule real-time (SMRT) sequencing, and it contains 1 chromosome of 1.83 Mbp and 1,835 protein-coding genes, 71 RNA genes, and 56 tRNA genes.
Collapse
|
13
|
Afshari R, Pillidge CJ, Read E, Rochfort S, Dias DA, Osborn AM, Gill H. New insights into cheddar cheese microbiota-metabolome relationships revealed by integrative analysis of multi-omics data. Sci Rep 2020; 10:3164. [PMID: 32081987 PMCID: PMC7035325 DOI: 10.1038/s41598-020-59617-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/27/2020] [Indexed: 11/11/2022] Open
Abstract
Cheese microbiota and metabolites and their inter-relationships that underpin specific cheese quality attributes remain poorly understood. Here we report that multi-omics and integrative data analysis (multiple co-inertia analysis, MCIA) can be used to gain deeper insights into these relationships and identify microbiota and metabolite fingerprints that could be used to monitor product quality and authenticity. Our study into different brands of artisanal and industrial cheddar cheeses showed that Streptococcus, Lactococcus and Lactobacillus were the dominant taxa with overall microbial community structures differing not only between industrial and artisanal cheeses but also among different cheese brands. Metabolome analysis also revealed qualitative and semi-quantitative differences in metabolites between different cheeses. This also included the presence of two compounds (3-hydroxy propanoic acid and O-methoxycatechol-O-sulphate) in artisanal cheese that have not been previously reported in any type of cheese. Integrative analysis of multi-omics datasets revealed that highly similar cheeses, identical in age and appearance, could be distinctively clustered according to cheese type and brand. Furthermore, the analysis detected strong relationships, some previously unknown, which existed between the cheese microbiota and metabolome, and uncovered specific taxa and metabolites that contributed to these relationships. These results highlight the potential of this approach for identifying product specific microbe/metabolite signatures that could be used to monitor and control cheese quality and product authenticity.
Collapse
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, PO Box 71, Bundoora, VIC, 3083, Australia
| | | | - Elizabeth Read
- Biosciences Research Division, Department of Environment and Primary Industries, AgriBiosciences, 5 Ring Road, Bundoora, Victoria VIC, 3083, Australia
| | - Simone Rochfort
- Biosciences Research Division, Department of Environment and Primary Industries, AgriBiosciences, 5 Ring Road, Bundoora, Victoria VIC, 3083, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, PO Box 71, Bundoora, VIC, 3083, Australia
| | - A Mark Osborn
- School of Science, RMIT University, Bundoora, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
14
|
Kim BS, Kim H, Kang SS. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Mentana A, Conte A, Del Nobile MA, Quinto M, Centonze D. Investigating the effects of mild preservation technology on perishable foods by volatolomics: The case study of ready-to-cook tuna-burgers. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Formation of alanine, α-aminobutyrate, acetate, and 2-butanol during cheese ripening by Pediococcus acidilactici FAM18098. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Lüdin P, Roetschi A, Wüthrich D, Bruggmann R, Berthoud H, Shani N. Update on Tetracycline Susceptibility of Pediococcus acidilactici Based on Strains Isolated from Swiss Cheese and Whey. J Food Prot 2018; 81:1582-1589. [PMID: 30169118 DOI: 10.4315/0362-028x.jfp-18-160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial strains used as starter cultures in the production of fermented foods may act as reservoirs for antibiotic resistance (AbR) genes. To avoid the introduction of such genes into the food chain, the presence of acquired AbR in bacterial strains added to food must be tested. Standard protocols and microbiological cut-off values have been defined to provide practitioners with a basis for evaluating whether their bacterial isolates harbor an acquired resistance to a given antibiotic. Here, we tested the AbR of 24 strains of Pediococcus acidilactici by using the standard protocol and microbiological cut-off values recommended by the European Food Safety Authority. Phenotypic data were complemented by searching for known AbR genes using an in silico analysis of whole genomes. The majority (54.2%) of the strains were able to grow at a tetracycline concentration above the defined cut-off, even though only one strain carried a known tetracycline resistance gene, tetM. The same strain also carried the AbR gene of an erythromycin resistance methylase, ermA, and displayed resistance toward clindamycin and erythromycin. Our results bolster the scarce data on the sensitivity of P. acidilactici to tetracycline and suggest that the microbiological cut-off recommended by the European Food Safety Authority for this antibiotic should be amended.
Collapse
Affiliation(s)
- Petra Lüdin
- 1 Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; and
| | | | - Daniel Wüthrich
- 2 Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Rémy Bruggmann
- 2 Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Hélène Berthoud
- 1 Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; and
| | - Noam Shani
- 1 Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; and
| |
Collapse
|
18
|
Montanari C, Barbieri F, Magnani M, Grazia L, Gardini F, Tabanelli G. Phenotypic Diversity of Lactobacillus sakei Strains. Front Microbiol 2018; 9:2003. [PMID: 30210476 PMCID: PMC6121134 DOI: 10.3389/fmicb.2018.02003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus sakei is a lactic acid bacteria (LAB) species highly adapted to the meat environment. For this reason, selected strains are often used as starter culture in the production of fermented sausages, especially in Mediterranean countries. It often represents the dominant species in these products and can maintain its viability during all the ripening period, which can take also some months. This ability is guaranteed by the possibility of the species to obtain energy through pathways active even when hexoses are depleted. This species is characterized by a relevant genetic and phenotypic diversity and its metabolism can be further affected by the growth condition applied. In this work we investigate the metabolic responses of six different L. sakei in a synthetic medium (DM) containing defined amounts of amino acids in relation to temperature and NaCl concentration. In addition, the activities of cells pre-grown in presence of glucose o ribose were tested. Arginine was efficiently up-taken with the exception of the type strain DSMZ 20017t. Other amino acids (i.e., serine, asparagine, cysteine, and methionine) were metabolized through potentially energetic pathways which start from pyruvate accumulation, as demonstrated by the organic acid accumulation trend in the condition tested, especially in DM without sugar added. The presence of excesses of pyruvate deriving from amino acids lead to the accumulation of diacetyl and acetoin by all the strains when sugars were added. This approach allowed a deeper insight into the phenotypic variability of the species and improved the comprehension of the metabolic pathways adopted by L. sakei to survive and grow in restrictive conditions such as those found in fermented sausages during fermentations. Thus, the results obtained are useful information for improving and optimizing the use of such strains as starter culture for these products.
Collapse
Affiliation(s)
- Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Michael Magnani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luigi Grazia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy.,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
19
|
The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese. Int J Food Microbiol 2017; 259:35-42. [PMID: 28783535 DOI: 10.1016/j.ijfoodmicro.2017.07.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/30/2017] [Indexed: 11/21/2022]
Abstract
The contribution of two starter (Lactobacillus delbrueckii and Streptococcus thermophilus) and nine non-starter (Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Pediococcus acidilactici and Pediococcus pentosaceus) species of lactic acid bacteria (LAB) to the volatile organic compounds (VOCs) of Caciocavallo Palermitano cheese was investigated. The strains used in this study were isolated during the production/ripening of the stretched cheese and tested in a cheese-based medium (CBM). The fermented substrates were analyzed for the growth of the single strains and subjected to the head space solid phase micro-extraction (HS-SPME) and gas chromatography - mass spectrometry (GC-MS). The 11 strains tested were all able to increase their numbers in CBM, even though the development of the starter LAB was quite limited. GC-MS analysis registered 43 compounds including seven chemical classes. A lower diversity of VOCs was registered for the unfermented curd based medium (CuBM) analyzed for comparison. The class of ketones represented a consistent percentage of the VOCs for almost all LAB, followed by alcohols and esters. The volatile profile of Pediococcus acidilactici and Lactobacillus delbrueckii was mainly characterized by 2-butanol, butanoic acid and hexanoic acid and their esters, while that of Lactobacillus casei and Lactobacillus rhamnosus was characterized by 2,3-butanedione and 2-butanone, 3-hydroxy. In order to correlate the VOCs produced by Caciocavallo Palermitano cheeses with those generated by individual LAB, the 4-month ripened cheeses resulting from the dairy process monitored during the isolation of LAB were also analyzed for the volatile chemical fraction and the compounds in common were subjected to a multivariate statistical analysis. The canonical analysis indicated that the VOCs of the ripened cheeses were mainly influenced by E. gallinarum, L. paracasei, L. delbrueckii, L. rhamnosus and L. casei and that 1-hexanol, o-xylene and m-xylene were the cheese VOCs highly correlated with LAB.
Collapse
|
20
|
In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Res Int 2014; 64:248-255. [DOI: 10.1016/j.foodres.2014.06.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022]
|
21
|
Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F. Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 2014; 177:136-54. [PMID: 24642348 DOI: 10.1016/j.ijfoodmicro.2014.02.019] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/26/2022]
Abstract
The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in cheeses (in both core and surface) and on the wooden surfaces of traditional equipment. The inhibition seems to be associated with their qualitative and quantitative composition rather than with their degree of diversity. The inhibitory mechanisms are not well elucidated. Both cross-sectional and cohort studies have evidenced a strong association of raw-milk consumption with protection against allergic/atopic diseases; further studies are needed to determine whether such association extends to traditional raw-milk cheese consumption. In the future, the use of meta-omics methods should help to decipher how traditional cheese ecosystems form and function, opening the way to new methods of risk-benefit management from farm to ripened cheese.
Collapse
Affiliation(s)
| | - Solange Buchin
- INRA, UR342 Technologie et Analyses Laitières, F-39801 Poligny, France
| | - Adrien Mallet
- Normandie Univ, France; UNICAEN, ABTE, F-14032 Caen, France
| | - Céline Delbes-Paus
- INRA, Unité Recherches Fromagères, 20 Côte de Reyne, F-15000 Aurillac, France
| | - Dominique A Vuitton
- UNICAEN, ABTE, F-14032 Caen, France; EA3181/Université de Franche-Comté, 25030, Besançon, France
| | | | | |
Collapse
|