1
|
Aishwarya P, Sabarinathan KG, Gomathy M, Meenakshisundaram P, Manonmani K, Kar AA. Endophytes as bioenhancers of plant growth: An overview. Fitoterapia 2024; 181:106355. [PMID: 39719223 DOI: 10.1016/j.fitote.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The need for food production rises with the era of expanding population. As a result, there is more indirect demand for chemical pesticides and fertilizers. Serious environmental concerns result from the continuous and careless usage of chemicals. Additionally, they could make the land infertile. One of the finest substitutes for chemicals is to use microorganisms, particularly endophytes. Endophytes uses both direct and indirect mechanisms to encourage plant growth by increased mineral availability, resilience to biotic and abiotic stresses, synthesis of significant phytohormones. This review is focused on exploring the plant growth promoting effect of endophytes and its potential implications in the crop production.
Collapse
Affiliation(s)
- P Aishwarya
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India
| | - K G Sabarinathan
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India.
| | - M Gomathy
- Dept. of Soil Science & Agricultural Chemistry, Agricultural College and Research Institute, Killikulam, TNAU, Tamil Nadu, India.
| | - P Meenakshisundaram
- Department of Biotechnology, Agricultural College & Research Institute, Madurai, TNAU, Tamil Nadu, India
| | - K Manonmani
- Department of Plant Pathology, Agricultural College & Research Institute, Madurai, TNAU, Tamil Nadu, India
| | - A Ahaz Kar
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India
| |
Collapse
|
2
|
Hong L, Wang Q, Zhang J, Chen X, Liu Y, Asiegbu FO, Wu P, Ma X, Wang K. Advances in the beneficial endophytic fungi for the growth and health of woody plants. FORESTRY RESEARCH 2024; 4:e028. [PMID: 39524434 PMCID: PMC11524292 DOI: 10.48130/forres-0024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the importance of microorganisms for plant survival has been increasingly recognized. Endophytic fungi, as part of holobiont, can confer growth advantages to plants. Most studies have shown that the endophytic fungi of forest trees can promote host plant growth, increase adversity resistance, and thus improve the survival competitiveness of forest trees. However, the beneficial examples of endophytic fungi on the growth and development of woody plants have not been systematically summarized. This review is focused on various aspects of beneficial endophytic fungi in forest trees (definition, classification, colonization mechanisms, etc.), with an emphasis on their beneficial roles in woody plant growth, protection against biotic and abiotic stresses, as well as the response of forest trees to endophytic fungi. In addition, this review lists a series of experiments on screening beneficial endophytic fungi from Chinese fir (Cunninghamia lanceolata) and verifying their beneficial functions, to explore the mutualistic relationships between them. This review not only provides a theoretical basis for the study of beneficial endophytic fungi in forest trees in the future but also sheds light on the molecular perspectives for a mechanistic understanding of their potential future significance for the sustainable utilization of forest resources and ecological environment protection.
Collapse
Affiliation(s)
- Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Junhao Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Fred O. Asiegbu
- Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
3
|
Dong Q, LeFevre GH, Mattes TE. Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3895-3907. [PMID: 38356175 PMCID: PMC10902836 DOI: 10.1021/acs.est.3c09183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.
Collapse
Affiliation(s)
- Qin Dong
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Bhardwaj N, Kumar A. Biocontrol Screening of Endophytes: Applications and Limitations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2480. [PMID: 37447041 DOI: 10.3390/plants12132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.
Collapse
Affiliation(s)
- Nikhil Kashyap
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nisha Yadav
- Division of Agriculture Extension, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Ajay Kumar
- Department of Botany, M.V. College, Buxar 802101, India
| |
Collapse
|
5
|
Wang M, Lian Y, Wang Y, Zhu L. The role and mechanism of quorum sensing on environmental antimicrobial resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121238. [PMID: 36758922 DOI: 10.1016/j.envpol.2023.121238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As more environmental contaminants emerging, antibiotics and antibiotic resistance genes (ARGs) have caused a substantial increase of antimicrobial resistance (AMR) in environment. Quorum sensing (QS) is a bacterial cell-to-cell communication process that regulates many traits and gene expression, including ARGs and the related genes that contribute to AMR development. Herein, we summarize the role, physiology, and genetic mechanisms of bacterial QS in AMR development in the environment. First, the effect of QS on AMR is introduced. Next, the role of QS in bacterial physiological behaviors that promote AMR development, including membrane permeability, tactic movement, biofilm formation, persister formation, and small colony variants (SCVs), is systematically analyzed. Furthermore, the regulation of QS on the expression of ARGs, generation of reactive oxygen species (ROS), which affects ARGs formation, and horizontal gene transfer (HGT), which accelerates the transmission of ARGs, are discussed to reveal the molecular mechanism for AMR development. This review provides a reference for a better understanding of AMR evolution and novel insights into AMR prevention.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Plant-Endophyte Interaction during Biotic Stress Management. PLANTS 2022; 11:plants11172203. [PMID: 36079585 PMCID: PMC9459794 DOI: 10.3390/plants11172203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host–endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant–endophyte interaction in biotic stress management.
Collapse
|
8
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
9
|
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:935. [PMID: 34067154 PMCID: PMC8151188 DOI: 10.3390/plants10050935] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Endophytic bacteria colonize plants and live inside them for part of or throughout their life without causing any harm or disease to their hosts. The symbiotic relationship improves the physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechnological, medicinal, and agricultural applications. The endophytes promote plant growth and fitness through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress tolerance. Strengthening of the plant immune system and suppression of disease are associated with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used for phytoremediation of environmental pollutants or the control of fungal diseases by the production of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum of applications to agriculturally and pharmaceutically interesting plant species. More recently, endophytic bacteria have also been used to produce nanoparticles for medical and industrial applications. This review highlights the biotechnological possibilities for bacterial endophyte applications and proposes future goals for their application.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
| | - Mohamed Hijri
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, Montréal, QC 22001, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Amr Elkelish
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| |
Collapse
|
10
|
Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. BIOLOGY 2021; 10:101. [PMID: 33535706 PMCID: PMC7912845 DOI: 10.3390/biology10020101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Collapse
Affiliation(s)
- Udaya Kumar Vandana
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Jina Rajkumari
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - L. Paikhomba Singha
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea;
| | - Pamidimarri D.V.N. Sudheer
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Sushma Chauhan
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Rambabu Ratnala
- TATA Institute for Genetics and Society, Bangalore 560065, India;
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Pranab Behari Mazumder
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Piyush Pandey
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| |
Collapse
|
11
|
|
12
|
Kumar A, Zhimo Y, Biasi A, Salim S, Feygenberg O, Wisniewski M, Droby S. Endophytic Microbiome in the Carposphere and Its Importance in Fruit Physiology and Pathology. POSTHARVEST PATHOLOGY 2021. [DOI: 10.1007/978-3-030-56530-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
14
|
Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci Rep 2019; 9:5477. [PMID: 30940828 PMCID: PMC6445130 DOI: 10.1038/s41598-019-41726-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Involvement of biofilm formation process during phosphate (P) solubilization by rhizobacterial strains is not clearly understood. Scanning electron microscopic observations revealed prominent biofilm development on tricalcium phosphate as well as on four different rock phosphate granules by two P solubilizing rhizobacteria viz. Burkholderia tropica P4 and B. unamae P9. Variation in the biofilm developments were also observed depending on the total P content of insoluble P used. Biofilm quantification suggested a strong correlation between the amounts of available P and degrees of biofilm formation. Lower concentrations of soluble P directed both the organisms towards compact biofilm development with maximum substratum coverage. Variation in the production of extracellular polymeric substances (EPS) in the similar pattern also suggested its close relationship with biofilm formation by the isolates. Presence of BraI/R quorum sensing (QS) system in both the organisms were detected by PCR amplification and sequencing of two QS associated genes viz. braR and rsaL, which are probably responsible for biofilm formation during P solubilization process. Overall observations help to hypothesize for the first time that, biofilm on insoluble P granules creates a close environment for better functioning of organic acids secreted by Burkholderia strains for maximum P solubilization during P deficient conditions.
Collapse
|
15
|
Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36-49. [DOI: 10.1016/j.micres.2019.02.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
16
|
Mucoid switch in Burkholderia cepacia complex bacteria: Triggers, molecular mechanisms and implications in pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:113-140. [PMID: 31128746 DOI: 10.1016/bs.aambs.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria produce a vast range of exopolysaccharides (EPSs) to thrive in diverse environmental niches and often display a mucoid phenotype in solid media. One such exopolysaccharide, cepacian, is produced by bacteria of the genus Burkholderia and is of interest due to its role in pathogenesis associated with lung infections in cystic fibrosis (CF) patients. Cepacian is a repeat-unit polymer that has been implicated in biofilm formation, immune system evasion, interaction with host cells, resistance against antimicrobials, and virulence. Its biosynthesis proceeds through the Wzy-dependent polymerization and secretion mechanism, which requires a multienzymatic complex. Key aspects of its structure, genetic organization, and the regulatory network involved in mucoid switch and regulation of cepacian biosynthesis at transcriptional and posttranscriptional levels are reviewed. It is also evaluated the importance of cepacian biosynthesis/regulation key players as evolutionary targets of selection and highlighted the complexity of the regulatory network, which allows cells to coordinate the expression of metabolic functions to the ones of the cell wall, in order to be successful in ever changing environments, including in the interaction with host cells.
Collapse
|
17
|
Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob 2019; 18:7. [PMID: 30717798 PMCID: PMC6360774 DOI: 10.1186/s12941-019-0306-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identification. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimination to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
18
|
Zúñiga A, Donoso RA, Ruiz D, Ruz GA, González B. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:557-565. [PMID: 28548604 DOI: 10.1094/mpmi-01-17-0008-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Raúl A Donoso
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
19
|
Chapalain A, Groleau MC, Le Guillouzer S, Miomandre A, Vial L, Milot S, Déziel E. Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Front Microbiol 2017; 8:1021. [PMID: 28676791 PMCID: PMC5476693 DOI: 10.3389/fmicb.2017.01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Species from the Burkholderia cepacia complex (Bcc) share a canonical LuxI/LuxR quorum sensing (QS) regulation system named CepI/CepR, which mainly relies on the acyl-homoserine lactone (AHL), octanoyl-homoserine lactone (C8-HSL) as signaling molecule. Burkholderia ambifaria is one of the least virulent Bcc species, more often isolated from rhizospheres where it exerts a plant growth-promoting activity. However, clinical strains of B. ambifaria display distinct features, such as phase variation and higher virulence properties. Notably, we previously reported that under laboratory conditions, only clinical strains of the B. ambifaria species produced 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs) via expression of the hmqABCDEFG operon. HMAQs are the methylated counterparts of the 4-hydroxy-2-alkylquinolines (HAQs) produced by the opportunistic human pathogen Pseudomonas aeruginosa, in which they globally contribute to the bacterial virulence and survival. We have found that unlike P. aeruginosa's HAQs, HMAQs do not induce their own production. However, they indirectly regulate the expression of the hmqABCDEFG operon. In B. ambifaria, a strong link between CepI/CepR-based QS and HMAQs is proposed, as we have previously reported an increased production of C8-HSL in HMAQ-negative mutants. Here, we report the identification of all AHLs produced by the clinical B. ambifaria strain HSJ1, namely C6-HSL, C8-HSL, C10-HSL, 3OHC8-HSL, 3OHC10-HSL, and 3OHC12-HSL. Production of significant levels of hydroxylated AHLs prompted the identification of a second complete LuxI/LuxR-type QS system relying on 3OHC10-HSL and 3OHC12-HSL, that we have named CepI2/CepR2. The connection between these two QS systems and the hmqABCDEFG operon, responsible for HMAQs biosynthesis, was investigated. The CepI/CepR system strongly induced the operon, while the second system appears moderately involved. On the other hand, a HMAQ-negative mutant overproduces AHLs from both QS systems. Even if HMAQs are not classical QS signals, their effect on AHL-based QS system still gives them a part to play in the QS circuitry in B. ambifaria and thus, on regulation of various phenotypes.
Collapse
Affiliation(s)
- Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Equipe Pathogénèse des Légionelles, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université LyonLyon, France
| | | | | | - Aurélie Miomandre
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Ludovic Vial
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | | | - Eric Déziel
- INRS-Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
20
|
Hu H, He J, Liu J, Yu H, Tang J, Zhang J. Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Adv 2016. [DOI: 10.1039/c5ra23466b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing (QS) signaling has been extensively studied in granules and single species populations.
Collapse
Affiliation(s)
- Huizhi Hu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Junguo He
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Liu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Huarong Yu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Tang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jie Zhang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
21
|
How KY, Hong KW, Chan KG. Whole genome sequencing enables the characterization of BurI, a LuxI homologue of Burkholderia cepacia strain GG4. PeerJ 2015; 3:e1117. [PMID: 26290785 PMCID: PMC4540015 DOI: 10.7717/peerj.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/30/2015] [Indexed: 01/24/2023] Open
Abstract
Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kar Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
22
|
Mangwani N, Kumari S, Das S. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl Microbiol Biotechnol 2015; 99:10283-97. [DOI: 10.1007/s00253-015-6868-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
|
23
|
Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:10-21. [PMID: 25494355 DOI: 10.1094/mpmi-07-14-0225-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Burkholderia kururiensis M130 is one of the few rice endophytic diazotrophic bacteria identified thus far which is able to enhance growth of rice. To date, very little is known of how strain M130 and other endophytes enter and colonize plants. Here, we identified genes of strain M130 that are differentially regulated in the presence of rice plant extract. A genetic screening of a promoter probe transposon mutant genome bank and RNAseq analysis were performed. The screening of 10,100 insertions of the genomic transposon reporter library resulted in the isolation of 61 insertions displaying differential expression in response to rice macerate. The RNAseq results validated this screen and indicated that this endophytic bacterium undergoes major changes in the presence of plant extract regulating 27.7% of its open reading frames. A large number of differentially expressed genes encode membrane transporters and secretion systems, indicating that the exchange of molecules is an important aspect of bacterial endophytic growth. Genes related to motility, chemotaxis, and adhesion were also overrepresented, further suggesting plant–bacteria interaction. This work highlights the potential close signaling taking place between plants and bacteria and helps us to begin to understand the adaptation of an endophyte in planta.
Collapse
|
24
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Tan CH, Koh KS, Xie C, Tay M, Zhou Y, Williams R, Ng WJ, Rice SA, Kjelleberg S. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME JOURNAL 2014; 8:1186-97. [PMID: 24430488 DOI: 10.1038/ismej.2013.240] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/30/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022]
Abstract
Quorum sensing (QS) signalling has been extensively studied in single species populations. However, the ecological role of QS in complex, multi-species communities, particularly in the context of community assembly, has neither been experimentally explored nor theoretically addressed. Here, we performed a long-term bioreactor ecology study to address the links between QS, organization and composition of complex microbial communities. The conversion of floccular biomass to highly structured granules was found to be non-random, but strongly and positively correlated with N-acyl-homoserine-lactone (AHL)-mediated QS. Specific AHLs were elevated up to 100-fold and were strongly associated with the initiation of granulation. Similarly, the levels of particular AHLs decreased markedly during the granular disintegration phase. Metadata analysis indicated that granulation was accompanied by changes in extracellular polymeric substance (EPS) production and AHL add-back studies also resulted in increased EPS synthesis. In contrast to the commonly reported nanomolar to micromolar signal concentrations in pure culture laboratory systems, QS signalling in the granulation ecosystem occurred at picomolar to nanomolar concentrations of AHLs. Given that low concentrations of AHLs quantified in this study were sufficient to activate AHL bioreporters in situ in complex granular communities, AHL mediated QS may be a common feature in many natural and engineered ecosystems, where it coordinates community behaviour.
Collapse
Affiliation(s)
- Chuan Hao Tan
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore [2] Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore [3] The School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Kai Shyang Koh
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Chao Xie
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Martin Tay
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore [2] Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore [3] The School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Rohan Williams
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Wun Jern Ng
- 1] Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore [2] The School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Scott A Rice
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore [2] The School of Biological Sciences, Nanyang Technological University, Singapore [3] Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore [2] The School of Biological Sciences, Nanyang Technological University, Singapore [3] Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Bragina A, Cardinale M, Berg C, Berg G. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 2013; 4:394. [PMID: 24391630 PMCID: PMC3866706 DOI: 10.3389/fmicb.2013.00394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses - model plants for long-term associations - in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves.
Collapse
Affiliation(s)
- Anastasia Bragina
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Massimiliano Cardinale
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- Institute of Plant Sciences, Karl-Franzens University of GrazGraz, Austria
| | - Christian Berg
- Institute of Plant Sciences, Karl-Franzens University of GrazGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| |
Collapse
|
27
|
The organization of the quorum sensing luxI/R family genes in Burkholderia. Int J Mol Sci 2013; 14:13727-47. [PMID: 23820583 PMCID: PMC3742214 DOI: 10.3390/ijms140713727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/.
Collapse
|
28
|
Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster. Appl Environ Microbiol 2013; 79:4421-32. [PMID: 23686262 DOI: 10.1128/aem.00635-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN.
Collapse
|
29
|
Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:546-53. [PMID: 23301615 DOI: 10.1094/mpmi-10-12-0241-r] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.
Collapse
Affiliation(s)
- Ana Zúñiga
- Universidad Adolfo Ibanez, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
30
|
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. MICROBIAL ECOLOGY 2012; 63:249-266. [PMID: 21850446 DOI: 10.1007/s00248-011-9929-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
Collapse
Affiliation(s)
- Zulma Rocío Suárez-Moreno
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 2011; 1:16. [PMID: 22919582 PMCID: PMC3417362 DOI: 10.3389/fcimb.2011.00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022] Open
Abstract
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico Lisboa, Portugal
| | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractBacteria belonging to the genus Burkholderia are well known for their adaptability to habitats as diverse as freshwater sediments, lungs of cystic fibrosis patients and plant tissues. This genus includes also plant, animal and human pathogenic species, such as Burkholderia glumae, Burkholderia pseudomallei and the Burkholderia cepacia complex. Over the past few years, several newly discovered non-pathogenic plant associated Burkholderia species have raised particular interest for their potential use in plant growth promotion, biocontrol of plant pathogens, phytoremediation and xenobiotics degradation. Highlights from recent studies on the taxonomy, ecology and pathogenicity of different species of the Burkholderia genus are presented with the aim to evaluate their potential use in biotechnology.
Collapse
|
33
|
Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358. Appl Environ Microbiol 2011; 78:726-34. [PMID: 22113916 DOI: 10.1128/aem.06442-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaL(WCS)). In P. putida WCS358, RsaL(WCS) displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaL(WCS) specifically binds to ppuI on a DNA region overlapping the predicted σ(70)-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaL(WCS) protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaL(WCS)-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaL(WCS) needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaL(WCS) regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity.
Collapse
|
34
|
Venturi V, Rampioni G, Pongor S, Leoni L. The virtue of temperance: built-in negative regulators of quorum sensing in Pseudomonas. Mol Microbiol 2011; 82:1060-70. [PMID: 22060261 DOI: 10.1111/j.1365-2958.2011.07890.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bacteria are now believed to produce small signal molecules in order to communicate in a process called quorum sensing (QS), which mediates cooperative traits and a co-ordinated behaviour. Pseudomonads have been extensively studied for their QS response highlighting that it plays a major role in determining their lifestyle. The main QS signal molecules produced by Pseudomonas belong to the family of N-acyl-homoserine lactones (AHLs); these are synthesized by a LuxI-family synthase and sensed by a LuxR-family regulator. Most often in Pseudomonas, repressor genes intergenically located between luxI and luxR form an integral part of QS system. Recent studies have highlighted an important role of these repressors (called RsaL and RsaM) in containing the QS response within cost-effective levels; this is central for pseudomonads as they have very versatile genomes allowing them to live in constantly changing and highly dynamic environments. This review focuses on the role played by RsaL and RsaM repressors and discusses the important implications of this control of the QS response.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012 Trieste, Italy.
| | | | | | | |
Collapse
|
35
|
Abstract
Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marijke Frederix
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
36
|
Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, Koh CL, Williams P. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 2011; 11:51. [PMID: 21385437 PMCID: PMC3062576 DOI: 10.1186/1471-2180-11-51] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/08/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. RESULTS By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. CONCLUSIONS Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.
Collapse
Affiliation(s)
- Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Institute of Biological Sciences (Division of Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Malaysia
| | - Steve Atkinson
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Choon-Kook Sam
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Siri Ram Chhabra
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Miguel Cámara
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chong-Lek Koh
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Paul Williams
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|