1
|
Fukui K, Nanatani K, Nakayama M, Hara Y, Tokura M, Abe K. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production. J Biosci Bioeng 2019; 127:465-471. [DOI: 10.1016/j.jbiosc.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/15/2022]
|
2
|
Stevens GG, Pérez-Fernández MA, Morcillo RJL, Kleinert A, Hills P, Brand DJ, Steenkamp ET, Valentine AJ. Roots and Nodules Response Differently to P Starvation in the Mediterranean-Type Legume Virgilia divaricata. FRONTIERS IN PLANT SCIENCE 2019; 10:73. [PMID: 30804964 PMCID: PMC6370976 DOI: 10.3389/fpls.2019.00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.
Collapse
Affiliation(s)
- Gary G. Stevens
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | | | - Rafael J. L. Morcillo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Aleysia Kleinert
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Paul Hills
- Institute for Plant Biotechnology, Stellenbosch University, Matieland, South Africa
| | - D. Jacobus Brand
- NMR Unit, Central Analytical Facility, Stellenbosch University, Matieland, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
3
|
Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes. J Biosci Bioeng 2018; 125:505-512. [DOI: 10.1016/j.jbiosc.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/24/2017] [Accepted: 12/09/2017] [Indexed: 11/15/2022]
|
4
|
Podleśny M, Kubik-Komar A, Kucharska J, Wyrostek J, Jarocki P, Targoński Z. Media optimization for economic succinic acid production by Enterobacter sp. LU1. AMB Express 2017. [PMID: 28633512 PMCID: PMC5476557 DOI: 10.1186/s13568-017-0423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Enterobacter sp. LU1 could efficiently convert glycerol to succinic acid under anaerobic conditions after the addition of lactose. In this study, media constituents affecting both Enterobacter sp. LU1 biomass and succinic acid production were investigated employing response surface methodology (RSM) with central composite design. Statistical methods led to the development of an efficient and inexpensive microbiological media based on crude glycerol, whey permeate as carbon sources and urea as a nitrogen source. The optimized production of bacterial biomass in aerobic conditions was predicted and the interactive effects between crude glycerol, urea and magnesium sulfate were investigated. As a result, a model for predicting the concentration of bacterial biocatalyst biomass was developed with crude glycerol as a sole carbon source. In addition, it was observed that the interactive effect between crude glycerol and urea was statistically significant. Response surface methodology was also employed to develop the model for predicting the concentration of succinic acid produced. Validity of the model was confirmed during verification experiments wherein actual results differed from predicted values by 0.77%. The applied statistical methods proved the feasibility for anaerobic succinic acid production on crude glycerol without expensive yeast extract addition. In conclusion, the RSM method can provide valuable information for succinic acid scale-up fermentation using Enterobacter sp. LU1.
Collapse
|
5
|
Fukui K, Nanatani K, Hara Y, Yamakami S, Yahagi D, Chinen A, Tokura M, Abe K. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production. Biosci Biotechnol Biochem 2017; 81:1837-1844. [DOI: 10.1080/09168451.2017.1345612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.
Collapse
Affiliation(s)
- Keita Fukui
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Kei Nanatani
- Department of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshihiko Hara
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Suguru Yamakami
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Daiki Yahagi
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Akito Chinen
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Mitsunori Tokura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Fermentative Production of Cysteine by Pantoea ananatis. Appl Environ Microbiol 2017; 83:AEM.02502-16. [PMID: 28003193 DOI: 10.1128/aem.02502-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis, which has fundamental implications for establishing overproduction in this microbe.IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to establish the fermentative production of cysteine. This study provides crucial insights into the design and construction of cysteine-producing strains, which may play central roles in realizing commercial basis production.
Collapse
|
7
|
Tsuge Y, Kawaguchi H, Sasaki K, Kondo A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Fact 2016; 15:19. [PMID: 26794242 PMCID: PMC4722748 DOI: 10.1186/s12934-016-0411-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
Collapse
Affiliation(s)
- Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Hideo Kawaguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Kengo Sasaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
8
|
Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes. Microb Cell Fact 2015; 14:80. [PMID: 26063229 PMCID: PMC4464251 DOI: 10.1186/s12934-015-0269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Succinate is an important C4 building block chemical, and its production via fermentative processes in bacteria has many practical applications in the biotechnology field. One of the major goals of optimizing the bacterium-based succinate production process is to lower the culture pH from the current neutral conditions, as this would reduce total production costs. In our previous studies, we selected Enterobacter aerogenes, a rapid glucose assimilator at pH 5.0, in order to construct a metabolically engineered strain that could produce succinate under weakly acidic conditions. This engineered strain produced succinate from glucose with a 72.7% (g/g) yield at pH 5.7, with a volumetric productivity of 0.23 g/L/h. Although this demonstrates proof-of-concept that bacterium-based succinate fermentation can be improved under weakly acidic conditions, several parameters still required further optimization. Results In this study, we genetically modified an E. aerogenes strain previously developed in our laboratory in order to increase the production of ATP during succinate synthesis, as we inferred that this would positively impact succinate biosynthesis. This led to the development of the ES08ΔptsG strain, which contains the following modifications: chromosomally expressed Actinobacillus succinogenes phosphoenolpyruvate carboxykinase, enhanced fumarate reductase, inactivated pyruvate formate lyase, pyruvate oxidase, and glucose-phosphotransferase permease (enzyme IIBCGlc). This strain produced 55.4 g/L succinate from glucose, with 1.8 g/L acetate as the major byproduct at pH 5.7 and anaerobic conditions. The succinate yield and volumetric productivity of this strain were 86.8% and 0.92 g/L/h, respectively. Conclusions Focusing on increasing net ATP production during succinate synthesis leads to increased succinate yield and volumetric productivity in E. aerogenes. We propose that the metabolically engineered E. aerogenes ES08ΔptsG strain, which effectively produces succinate under weakly acidic and anaerobic conditions, has potential utility for economical succinate production.
Collapse
|