1
|
Luo X, Wang X, Zhang L, Du A, Deng Z, Jiang M, He X. Importance of aspartic acid side chain carboxylate-arginine interaction in substrate selection of arginine 2,3-aminomutase BlsG. Protein Sci 2023; 32:e4584. [PMID: 36721314 PMCID: PMC9926467 DOI: 10.1002/pro.4584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
The fungicide nucleoside blasticidin S features a β-arginine, a moiety seldom revealed in the structure of natural products. BlsG, a radical SAM arginine-2,3-aminomutase from the blasticidin S biosynthetic pathway, displayed promiscuous activity to three basic amino acids. Here in this study, we demonstrated that BlsG showed high preference toward its natural substrate arginine. The combined structural modeling, steady-state kinetics, and mutational analyses lead to the detailed understanding of the substrate recognition of BlsG. A single mutation of T340D changed the substrate preference of BlsG leading to a little more preference to lysine than arginine. On the basis of our understanding of the substrate selection of BlsG and bioinformatic analysis, we propose that the D…D motif locationally corresponding to D293 and D330 of KAM is characteristic of lysine 2,3-aminomutase while the corresponding D…T motif is characteristic of arginine 2,3-aminomutase. The study may provide a simple way to discern the arginine 2,3-aminomutase and thus lead to the discovery of new natural compounds with β-arginine moiety.
Collapse
Affiliation(s)
- Xiangkun Luo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiankun Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lina Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Shi Y, Zhang J, Ma Z, Zhang Y, Bechthold A, Yu X. Double-reporter-guided targeted activation of the oxytetracycline silent gene cluster in Streptomyces rimosus M527. Biotechnol Bioeng 2023; 120:1411-1422. [PMID: 36775891 DOI: 10.1002/bit.28347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
In Streptomyces rimosus M527, the oxytetracycline (OTC) biosynthetic gene cluster is not expressed under laboratory conditions. In this study a reported-guided mutant selection (RGMS) procedure was used to activate the cluster. The double-reporter plasmid pAGT was constructed in which gusA encoding a β-glucuronidase and tsr encoding a thiostrepton resistance methyltransferase were placed under the control of the native promoter of oxyA gene (PoxyA ). Plasmid pAGT was introduced and integrated into the chromosome of S. rimosus M527 by conjugation, yielding initial strain M527-pAGT. Subsequently, mutants of M527-pAGT were generated by using ribosome engineering technology. The mutants harboring activated OTC gene cluster were selected based on visual observation of GUS activity and thiostrepton resistance. Finally, mutant M527-pAGT-R7 was selected producing OTC in a concentration of 235.2 mg/L. In this mutant transcriptional levels of oxysr genes especial oxyAsr gene were increased compared to wild-type strain S. rimosus M527. The mutant M527-pAGT-R7 showed antagonistic activities against Gram-negative and Gram-positive strains. All data indicate that the OTC gene cluster was successfully activated using the RGMS method.
Collapse
Affiliation(s)
- Yue Shi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| | - Jinyao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Urbelienė N, Tiškus M, Tamulaitienė G, Gasparavičiūtė R, Lapinskaitė R, Jauniškis V, Sūdžius J, Meškienė R, Tauraitė D, Skrodenytė E, Urbelis G, Vaitekūnas J, Meškys R. Cytidine deaminases catalyze the conversion of N( S, O) 4-substituted pyrimidine nucleosides. SCIENCE ADVANCES 2023; 9:eade4361. [PMID: 36735785 PMCID: PMC9897663 DOI: 10.1126/sciadv.ade4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of N4-acyl-cytidines, N4-alkyl-cytidines, and N4-alkyloxycarbonyl-cytidines, and S4-alkylthio-uridines and O4-alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible β3α3 loop of CDAs. We propose that CDAs that are active toward a wide range of substrates participate in salvage and/or catabolism of variously modified pyrimidine nucleosides. This identified promiscuity of CDAs expands the knowledge about the cellular turnover of cytidine derivatives, including the pharmacokinetics of pyrimidine-based prodrugs.
Collapse
Affiliation(s)
- Nina Urbelienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Matas Tiškus
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Ringailė Lapinskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Vykintas Jauniškis
- UAB Biomatter Designs (Biomatter), Žirmūnų st. 139A, 09120 Vilnius, Lithuania
| | - Jurgis Sūdžius
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Emilija Skrodenytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Gintaras Urbelis
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av., 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Li H, Zhao J, Ding W, Zhang Q. Glucuronyl C4 dehydrogenation by the radical SAM enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun (Camb) 2022; 58:3561-3564. [PMID: 35199117 DOI: 10.1039/d1cc07132g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we report functional investigation of the radical S-adenosylmethionine enzyme BlsE by using cytosylglucuronamide (CGM), which is the amide analog of cytosylglucuronic acid (CGA), an intermediate involved in blasticidin S biosynthesis. We showed that, instead of decarboxylation of CGA reported previously, BlsE catalyzes C4'-dehydrogenation of CGM, and the resulting ketone is acted on by an aminotransferase BlsH to install the C4'-amino group, which uses L-Asp as the amino donor.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Junfeng Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Lee YH, Hou X, Chen R, Feng J, Liu X, Ruszczycky MW, Gao JM, Wang B, Zhou J, Liu HW. Radical S-Adenosyl Methionine Enzyme BlsE Catalyzes a Radical-Mediated 1,2-Diol Dehydration during the Biosynthesis of Blasticidin S. J Am Chem Soc 2022; 144:4478-4486. [PMID: 35238201 DOI: 10.1021/jacs.1c12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biosynthesis of blasticidin S has drawn attention due to the participation of the radical S-adenosyl methionine (SAM) enzyme BlsE. The original assignment of BlsE as a radical-mediated, redox-neutral decarboxylase is unusual because this reaction appears to serve no biosynthetic purpose and would need to be reversed by a subsequent carboxylation step. Furthermore, with the exception of BlsE, all other radical SAM decarboxylases reported to date are oxidative in nature. Careful analysis of the BlsE reaction, however, demonstrates that BlsE is not a decarboxylase but instead a lyase that catalyzes the dehydration of cytosylglucuronic acid (CGA) to form cytosyl-4'-keto-3'-deoxy-d-glucuronic acid, which can rapidly decarboxylate nonenzymatically in vitro. Analysis of substrate isotopologs, fluorinated analogues, as well as computational models based on X-ray crystal structures of the BlsE·SAM (2.09 Å) and BlsE·SAM·CGA (2.62 Å) complexes suggests that BlsE catalysis likely proceeds via direct elimination of water from the CGA C4' α-hydroxyalkyl radical as opposed to 1,2-migration of the C3'-hydroxyl prior to dehydration. Biosynthetic and mechanistic implications of the revised assignment of BlsE are discussed.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xueli Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ridao Chen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Antifungal Secondary Metabolites Against Blast Fungus Magnaporthe oryzae. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S. Proc Natl Acad Sci U S A 2021; 118:2102318118. [PMID: 34282016 DOI: 10.1073/pnas.2102318118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.
Collapse
|
8
|
Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Crit Rev Biotechnol 2021; 41:994-1022. [PMID: 34006149 DOI: 10.1080/07388551.2021.1898325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Blast diseases, caused by the fungal pathogen Magnaporthe oryzae, are among the most destructive diseases that occur on at least 50 species of grasses, including cultivated cereals wheat, and rice. Although fungicidal control of blast diseases has widely been researched, development of resistance of the pathogen against commercially available products makes this approach unreliable. Novel approaches such as the application of biopesticides against the blast fungus are needed for sustainable management of this economically important disease. Antagonistic microorganisms, such as fungi and probiotic bacteria from diverse taxonomic genera were found to suppress blast fungi both in vitro and in vivo. Various classes of secondary metabolites, such as alkaloids, phenolics, and terpenoids of plant and microbial origin significantly inhibit fungal growth and may also be effective in managing blast diseases. Common modes of action of microbial biocontrol agents include: antibiosis, production of lytic enzymes, induction of systemic resistance in host plant, and competition for nutrients or space. However, the precise mechanism of biocontrol of the blast fungus by antagonistic microorganisms and/or their bioactive secondary metabolites is not well understood. Commercial formulations of biocontrol agents and bioactive natural products could be cost-effective and sustainable but their availability at this time is extremely limited. This review updates our knowledge on the infection pathway of the wheat blast fungus, catalogs naturally occurring biocontrol agents that may be effective against blast diseases, and discusses their role in sustainable management of the disease.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mahfuzur Rahman
- WVU Extension Service, West Virginia University, Morgantown, WV, USA
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
9
|
Bratiichuk D, Kurylenko O, Vasylyshyn R, Zuo M, Kang Y, Dmytruk K, Sibirny A. Development of new dominant selectable markers for the nonconventional yeasts
Ogataea polymorpha
and
Candida famata. Yeast 2020; 37:505-513. [DOI: 10.1002/yea.3467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dmytro Bratiichuk
- Institute of Cell Biology National Academy of Sciences of Ukraine Lviv Ukraine
| | - Olena Kurylenko
- Institute of Cell Biology National Academy of Sciences of Ukraine Lviv Ukraine
| | | | - MingXing Zuo
- Institute of Cell Biology National Academy of Sciences of Ukraine Lviv Ukraine
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou Guizhou Medical University Guiyang China
| | - Yingqian Kang
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou Guizhou Medical University Guiyang China
| | - Kostyantyn Dmytruk
- Institute of Cell Biology National Academy of Sciences of Ukraine Lviv Ukraine
| | - Andriy Sibirny
- Institute of Cell Biology National Academy of Sciences of Ukraine Lviv Ukraine
- Department of Microbiology and Molecular Genetics University of Rzeszów Rzeszów Poland
| |
Collapse
|
10
|
Niu G, Li Z, Huang P, Tan H. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. J Antibiot (Tokyo) 2019; 72:906-912. [DOI: 10.1038/s41429-019-0230-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
|
11
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
12
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
13
|
Wang X, Du A, Yu G, Deng Z, He X. Guanidine N-methylation by BlsL Is Dependent on Acylation of Beta-amine Arginine in the Biosynthesis of Blasticidin S. Front Microbiol 2017; 8:1565. [PMID: 28878744 PMCID: PMC5572114 DOI: 10.3389/fmicb.2017.01565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022] Open
Abstract
The peptidyl nucleoside blasticidin S (BS) produced by Streptomyces griseochromogenes was the first non-mercurial fungicide used to prevent rice blast and increasingly used as a selection reagent in transgenic study. Acylation by addition of a leucine residue at the beta amine group of arginine side chain of demethylblasticidin S (DBS) has been proposed as a novel self-resistance to the cytotoxic biosynthetic intermediate. But the resultant product leucyldemethylblasticidin S (LDBS) has not been isolated as a metabolite, and LDBS synthetase activity remained to be demonstrated in S. griseochromogenes. In this study, we isolated LDBS in a BS heterologous producer S. lividans WJ2 upon the deletion of blsL, which encodes a S-Adenosyl methionine-dependent methyltransferase. Purified BlsL efficiently methylated LDBS at the delta N of beta-arginine to generate the ultimate intermediate LBS, but nearly didn’t methylate DBS to final product BS. Above experiments demonstrated that LDBS is indeed an intermediate in BS biosynthetic pathway, and acylation of beta-amino group of arginine side chain is prerequisite for efficient guanidine N-methylation in addition to being a self-resistance mechanism.
Collapse
Affiliation(s)
- Xiankun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Guiyang Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
14
|
Liu L, Ji X, Li Y, Ji W, Mo T, Ding W, Zhang Q. A mechanistic study of the non-oxidative decarboxylation catalyzed by the radical S-adenosyl-l-methionine enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun (Camb) 2017; 53:8952-8955. [DOI: 10.1039/c7cc04286h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BlsE-catalyzed non-oxidative decarboxylation is initiated by a hydrogen abstraction from a sugar carbon of the substrate cytosylglucuronic acid (CGA).
Collapse
Affiliation(s)
- Lei Liu
- College of Life Science & Biotechnology
- Mianyang Normal University
- Mianyang 621000
- P. R. China
- Department of Chemistry
| | - Xinjian Ji
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Yongzhen Li
- Department of Chemistry
- Fudan University
- Shanghai
- China
- Medical College of Qinghai University
| | - Wenjuan Ji
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Tianlu Mo
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Wei Ding
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Qi Zhang
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|
15
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
16
|
The standalone aminopeptidase PepN catalyzes the maturation of blasticidin S from leucylblasticidin S. Sci Rep 2015; 5:17641. [PMID: 26621790 PMCID: PMC4664946 DOI: 10.1038/srep17641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/03/2015] [Indexed: 11/11/2022] Open
Abstract
The peptidyl nucleoside blasticidin S (BS) isolated from Streptomyces griseochromogenes was the first non-mercurial fungicide used on a large scale to prevent rice blast. In the biosynthesis of BS, leucylblasticidin S (LBS) was suggested as the penultimate metabolite with 20-fold less inhibitory activity than the final product BS. Incomplete conversion of LBS to BS at a variable efficiency ranging from 10% to 90% was observed either in the native strain S. griseochromogenes or a heterologous producer Streptomyces lividans WJ2. In this study, we determined that maturation of BS from LBS is not a spontaneous process but is governed by a standalone peptidase PepN, which hydrolyzes LBS in a pH-sensitive way with most appropriate of pH 7~8 but is inactive when the pH is below 5 or above 10. PepN1 and PepN2, two neighboring PepN homologs from Streptomyces lividans were purified in E. coli but displayed ca.100-fold difference in LBS hydrolytic activity. Overexpression of pepN1 in WJ2 enhanced BS yield by 100% and lowered the ratio of LBS to BS from 2:1 to 2:3. This work presents the expansion of the biological role for PepN in antibiotic maturation and the first report of hydrolysis of beta amide linkage by this conserved enzyme.
Collapse
|
17
|
Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015; 23:110-9. [DOI: 10.1016/j.tim.2014.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
18
|
An In silico Based Comparison of Drug Interactions in Wild and Mutant Human β-tubulin through Docking Studies. Avicenna J Med Biotechnol 2014; 6:81-93. [PMID: 24834310 PMCID: PMC4009099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/24/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Tubulin protein being the fundamental unit of microtubules is actively involved in cell division thus making them a potential anti-cancer drug target. In spite of many reported drugs against tubulin, few of them have started developing resistance in human β-tubulin due to amino acid substitutions. METHODS In this study we generated three mutants (F270V, A364T and Q292E) using Modeller9v10 which were targeted with compounds from higher and lower plants along with marine isolates using iGEMDOCK2.0 to identify their residual interactions. RESULTS The mutant F270V does not bring in any increase in the binding affinity in comparison with the taxol-wild type due to their conservative substitutions. However, it increases the volume of the active site. A364T mutant brings a better binding among few of the marine and higher plants isolates due to the substitution of the non-reactive methyl group with the polar residue. But this leads to reduced active site volume. Finally the mutant Q292E from epothilone binding site brings a remarkable change in drug binding in the mutants in comparison with the wild type due to the substitution of uncharged residue with the charged one. But as such there was no change in the volume of the active site observed in them. CONCLUSION Lower plants extracts were reported to exhibit better interactions with the taxol and epothilone binding sites. Whereas marine and higher plants isolates shows significant interactions only in the wild type instead of the mutants. In addition to this, the residual substitutions were also found to alter the conformations of the active sites in mutants.
Collapse
|