1
|
Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Arch Microbiol 2024; 206:363. [PMID: 39073473 DOI: 10.1007/s00203-024-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Katy Foss
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Beersheba, Israel
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
3
|
Chen X, Wang S, Tan Y, Huang J, Yang X, Li S. Nanoparticle-Based Lateral Flow Biosensors Integrated With Loop-Mediated Isothermal Amplification for the Rapid and Visual Diagnosis of Hepatitis B Virus in Clinical Application. Front Bioeng Biotechnol 2021; 9:731415. [PMID: 34595159 PMCID: PMC8477041 DOI: 10.3389/fbioe.2021.731415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains one of the major public health issues worldwide. Developing a rapid, sensitive, specific, easy-to-operate, and cost-saving approach for the diagnosis of HBV is essential for its therapy and prevention. Here, we first devised a novel approach, termed “loop-mediated isothermal amplification integrated with a nanoparticle-based lateral flow biosensor (LAMP-LFB),” for the detection of HBV in clinical application. The results indicated that a set of LAMP primers based on the S gene were valid for the establishment of HBV-LAMP-LFB. The optimal HBV-LAMP can be carried out at a constant temperature of 65°C for 40 min. The whole detection process, including HBV genomic DNA preparation (∼10 min), LAMP (40 min), and LFB reading (within 2 min), can be accomplished within 60 min. The limit of detection of the HBV-LAMP-LFB assay was 7.5 IU per test. The specificity of this assay was one hundred percent, and there was no cross-reactivity with other pathogens. Hence, these results indicated that the HBV-LAMP-LFB assay established in the current study is a sensitive, rapid, specific, visual, simple, and cost-saving method for the screening of HBV agents. More importantly, the HBV-LAMP-LFB has remarkable potential to develop a point-of-care testing in clinical application, especially in resource-scarce regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shoshi Wang
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yan Tan
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
| | - Junfei Huang
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xingui Yang
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| |
Collapse
|
4
|
Lei J, Han X, Tang X, Wang H, Zhang Q. Development of Anti-Idiotypic Nanobody-Phage Based Immuno-Loop-Mediated Isothermal Amplification Assay for Aflatoxins in Peanuts. Toxins (Basel) 2020; 12:toxins12090565. [PMID: 32887280 PMCID: PMC7551471 DOI: 10.3390/toxins12090565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/20/2023] Open
Abstract
Aflatoxin contamination in agricultural products has posed serious health hazards and brought huge economic loss in the food and feed industries. Monitoring aflatoxins in various foods and feeds has become a crucial means to protect public health. This study aimed to report an immuno-loop-mediated isothermal amplification (iLAMP) assay by using an anti-idiotypic nanobody-phage for on-site and rapid detection of aflatoxin in real samples. The iLAMP method was developed on the basis of a competitive immunoassay and LAMP reaction performed in a simple water bath. This method can provide visualized test results: violet color represents positive samples while sky blue represents negative. The visual detection limits of iLAMP for aflatoxin B1, B2, G1, and G2 in peanut samples were 1.6, 1.6, 3.2, and 16 μg/kg, respectively. The developed assay was verified with high performance liquid chromatography (HPLC) for the analysis of aflatoxins in peanuts, which demonstrated that the iLAMP method can be applied to the detection of aflatoxin in real samples. The novel iLAMP assay eliminates the need for aflatoxin conjugates, the antibody labeling process, and special equipment, and offers an alternative to existing methods with advantages of time-saving, cost-effectiveness, and ease-of-use.
Collapse
Affiliation(s)
- Jiawen Lei
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.L.); (H.W.)
| | - Xiaole Han
- College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Haiying Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.L.); (H.W.)
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Correspondence: ; Tel.: +86-27-8681-2943
| |
Collapse
|
5
|
A simple, sensitive and non-enzymatic signal amplification strategy driven by seesaw gate. Anal Chim Acta 2020; 1108:160-166. [DOI: 10.1016/j.aca.2020.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
|
6
|
Dang H, Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Abundance of Chlorinated Solvent and 1,4-Dioxane Degrading Microorganisms at Five Chlorinated Solvent Contaminated Sites Determined via Shotgun Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13914-13924. [PMID: 30427665 DOI: 10.1021/acs.est.8b04895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism. The taxonomic analysis revealed numerous genera previously linked to chlorinated solvent degradation, including Dehalococcoides, Desulfitobacterium, and Dehalogenimonas. The functional gene analysis indicated vcrA and tceA from D. mccartyi were the RDases with the highest relative abundance. Reads aligning with both aerobic and anaerobic biomarkers were observed across all sites. Aerobic solvent degradation genes, etnC or etnE, were detected in at least one sample from each site, as were pmoA and mmoX. The most abundant 1,4-dioxane biomarker detected was Methylosinus trichosporium OB3b mmoX. Reads aligning to thmA or Pseudonocardia were not found. The work illustrates the importance of shotgun sequencing to provide a more complete picture of the functional abilities of microbial communities. The approach is advantageous over current methods because an unlimited number of functional genes can be quantified.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Paul B Hatzinger
- APTIM , 17 Princess Road , Lawrenceville , New Jersey 08648 , United States
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
- Center for Microbial Ecology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Alison M Cupples
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
7
|
Liu X, Fan X, Matsumoto H, Nie Y, Sha Z, Yi K, Pan J, Qian Y, Cao M, Wang Y, Zhu G, Wang M. Biotoxin Tropolone Contamination Associated with Nationwide Occurrence of Pathogen Burkholderia plantarii in Agricultural Environments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5105-5114. [PMID: 29589436 DOI: 10.1021/acs.est.7b05915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tropolone, a biotoxin produced by the agricultural pathogen Burkholderia plantarii, exerts cytotoxicity toward a wide array of biota. However, due to the lack of quantitative and qualitative approach, both B. plantarii occurrence and tropolone contamination in agricultural environments remain poorly understood. Here, we presented a sensitive and reliable method for detection of B. plantarii in artificial, plant, and environmental matrices by tropolone-targeted gas chromatography-triple-quadrupole tandem mass spectrometry analysis. Limits of detection for B. plantarii and tropolone were 10 colony-forming units (CFU)/mL and 0.017 μg/kg, respectively. In a series of simulation trials, we found that B. plantarii from 10 to 108 CFU/mL produced tropolone between 0.006 and 107.8 mg/kg in a cell-population-dependent manner, regardless of habitat. Correlation analysis clarified a reliable reflection of B. plantarii density by tropolone level with R2 values from 0.9201 to 0.9756 ( p < 0.01). Through a nationwide pilot study conducted in China, tropolone contamination was observed at 0.014-0.157 mg/kg in paddy soil and rice grains, and subsequent redundancy analysis revealed soil organic matter to be a dominant environmental factor, having a positive correlation with tropolone contamination. In this context, our results imply that potential ecological and dietary risks posed by long-term exposure to trace levels of tropolone contamination are of concern.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Xiaoyan Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Haruna Matsumoto
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Zhimin Sha
- School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Kunpeng Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jiuyue Pan
- College of Plant Protection , Hunan Agricultural University , Changsha 410128 , China
| | - Yuan Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengchao Cao
- Patent Examination Cooperation Jiangsu Center of the Patent Office, State Intellectual Property Office of the PRC , Suzhou 215163 , China
| | - Yihu Wang
- Solution Department , Jiangsu Rotam Chemistry Co., Ltd. , Suzhou 215301 , China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
8
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
9
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Williams MR, Stedtfeld RD, Engle C, Salach P, Fakher U, Stedtfeld T, Dreelin E, Stevenson RJ, Latimore J, Hashsham SA. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS One 2017; 12:e0186462. [PMID: 29036210 PMCID: PMC5643059 DOI: 10.1371/journal.pone.0186462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field.
Collapse
Affiliation(s)
- Maggie R. Williams
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert D. Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Cathrine Engle
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Paul Salach
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Umama Fakher
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Tiffany Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Erin Dreelin
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
- Center for Water Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - R. Jan Stevenson
- Center for Water Sciences, Michigan State University, East Lansing, Michigan, United States of America
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jo Latimore
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Syed A. Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Most probable number with visual based LAMP for the quantification of reductive dehalogenase genes in groundwater samples. J Microbiol Methods 2017; 143:44-49. [PMID: 29031631 DOI: 10.1016/j.mimet.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023]
Abstract
The remediation of chlorinated solvent contaminated sites frequently involves bioaugmentation with mixed cultures containing Dehalococcoides mccartyi. Their activity is then examined by quantifying reductive dehalogenase (RDase) genes. Recently, we described a rapid, low cost approach, based on loop mediated isothermal amplification (LAMP), which allowed for the visual detection of RDase genes from groundwater. In that study, samples were concentrated (without DNA extraction), incubated in a water bath (avoiding the use of a thermal cycler) and amplification was visualized by the addition of SYBR green (post incubation). Despite having a detection limit less than the threshold recommended for effective remediation, the application of the assay was limited because of the semi-quantitative nature of the data. Moreover, the assay was prone to false positives due to the aerosolization of amplicons. In this study, deoxyuridine triphosphate (dUTP) and uracil DNA glycosylase (UNG) were incorporated into the assay to reduce the probability of false positives. Optimization experiments revealed a UNG concentration of 0.2units per reaction was adequate for degrading trace levels of AUGC based contamination (~1.4×104 gene copies/reaction) without significant changes to the detection limit (~100 gene copies/reaction). Additionally, the optimized assay was used with the most probable number (MPN) method to quantify RDase genes (vcrA and tceA) in multiple groundwater samples from a chlorinated solvent contaminated site. Using this approach, gene concentrations were significantly correlated to concentrations obtained using traditional methods (qPCR and DNA templates). Although the assay underestimated RDase genes concentrations, a strong correlation (R2=0.78 and 0.94) was observed between the two data sets. The regression equations obtained will be valuable to determine gene copies in groundwater using the newly developed, low cost and time saving method.
Collapse
Affiliation(s)
- Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Paul B Hatzinger
- APTIM Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA; Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Hu R, Wang G, Yuan R, Xu Y, Yu T, Zhong L, Zhou Q, Ding S. An electrochemical biosensor for highly sensitive detection of microRNA-377 based on strand displacement amplification coupled with three-way junction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater. Appl Microbiol Biotechnol 2017; 101:4827-4835. [PMID: 28238079 DOI: 10.1007/s00253-017-8203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
TaqMan probe-based quantitative polymerase chain reaction (qPCR) specific to the biomarker reductive dehalogenase (RDase) genes is a widely accepted molecular biological tool (MBT) for determining the abundance of Dehalococcoides sp. in groundwater samples from chlorinated solvent-contaminated sites. However, there are significant costs associated with this MBT. In this study, we describe an approach that requires only low-cost laboratory equipment (a bench top centrifuge and a water bath) and requires less time and resources compared to qPCR. The method involves the concentration of biomass from groundwater, without DNA extraction, and loop-mediated isothermal amplification (LAMP) of the cell templates. The amplification products are detected by a simple visual color change (orange/green). The detection limits of the assay were determined using groundwater from a contaminated site. In addition, the assay was tested with groundwater from three additional contaminated sites. The final approach to detect RDase genes, without DNA extraction or a thermal cycler, was successful to 1.8 × 105 gene copies per L for vcrA and 1.3 × 105 gene copies per L for tceA. Both values are below the threshold recommended for effective in situ dechlorination.
Collapse
Affiliation(s)
- Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Paul B Hatzinger
- CB&I Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.,Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
14
|
Stedtfeld RD, Stedtfeld TM, Samhan F, Kanitkar YH, Hatzinger PB, Cupples AM, Hashsham SA. Direct loop mediated isothermal amplification on filters for quantification of Dehalobacter in groundwater. J Microbiol Methods 2016; 131:61-67. [PMID: 27720723 DOI: 10.1016/j.mimet.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Nucleic acid amplification of biomarkers is increasingly used to monitor microbial activity and assess remedial performance in contaminated aquifers. Previous studies described the use of filtration, elution, and direct isothermal amplification (i.e. no DNA extraction and purification) as a field-able means to quantify Dehalococcoides spp. in groundwater. This study expands previous work with direct loop mediated isothermal amplification (LAMP) for the detection and quantification of Dehalobacter spp. in groundwater. Experiments tested amplification of DNA with and without crude lysis and varying concentrations of humic acid. Three separate field-able methods of biomass concentration with eight aquifer samples were also tested, comparing direct LAMP with traditional DNA extraction and quantitative PCR (qPCR). A new technique was developed where filters were amplified directly within disposable Gene-Z chips. The direct filter amplification (DFA) method eliminated an elution step and provided a detection limit of 102Dehalobacter cells per 100mL. LAMP with crudely lysed Dehalobacter had a negligible effect on threshold time and sensitivity compared to lysed samples. The LAMP assay was more resilient than traditional qPCR to humic acid in sample, amplifying with up to 100mg per L of humic acid per reaction compared to 1mg per L for qPCR. Of the tested field-able concentrations methods, DFA had the lowest coefficient of variation among Dehalobacter spiked groundwater samples and lowest threshold time indicating high capture efficiency and low inhibition. While demonstrated with Dehalobacter, the DFA method can potentially be used for a number of applications requiring field-able, rapid (<60min) and highly sensitive quantification of microorganisms in environmental water samples.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tiffany M Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Farag Samhan
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Water Pollution Control, National Research Centre, 33 El-Bohouth, P.O. 12622, Ad-Doqi, Giza, Egypt
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Wilson FP, Liu X, Mattes TE, Cupples AM. Nocardioides, Sediminibacterium, Aquabacterium, Variovorax, and Pseudomonas linked to carbon uptake during aerobic vinyl chloride biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19062-19070. [PMID: 27343076 DOI: 10.1007/s11356-016-7099-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Vinyl chloride (VC) is a frequent groundwater contaminant and a known human carcinogen. Bioremediation is a potential cleanup strategy for contaminated sites; however, little is known about the bacteria responsible for aerobic VC degradation in mixed microbial communities. In attempts to address this knowledge gap, the microorganisms able to assimilate labeled carbon ((13)C) from VC within a mixed culture capable of rapid VC degradation (120 μmol in 7 days) were identified using stable isotope probing (SIP). For this, at two time points during VC degradation (days 3 and 7), DNA was extracted from replicate cultures initially supplied with labeled or unlabeled VC. The extracted DNA was ultracentrifuged, fractioned, and the fractions of greater buoyant density (heavy fractions, 1.758 to 1.780 g mL(-1)) were subject to high-throughput sequencing. Following this, specific primers were designed for the most abundant phylotypes in the heavy fractions. Then, quantitative PCR (qPCR) was used across the buoyant density gradient to confirm label uptake by these phylotypes. From qPCR and/or sequencing data, five phylotypes were found to be dominant in the heavy fractions, including Nocardioides (∼40 %), Sediminibacterium (∼25 %), Aquabacterium (∼17 %), Variovorax (∼6 %), and Pseudomonas (∼1 %). The abundance of two functional genes (etnC and etnE) associated with VC degradation was also investigated in the SIP fractions. Peak shifts of etnC and etnE gene abundance toward heavier fractions were observed, indicating uptake of (13)C into the microorganisms harboring these genes. Analysis of the total microbial community indicated a significant dominance of Nocardioides over the other label-enriched phylotypes. Overall, the data indicate Nocardioides is primarily responsible for VC degradation in this mixed culture, with the other putative VC degraders generating a small growth benefit from VC degradation. The specific primers designed toward the putative VC degraders may be of use for investigating VC degradation potential at contaminated sites.
Collapse
Affiliation(s)
- Fernanda Paes Wilson
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 48824, MI, USA
| | - Xikun Liu
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, 52242, IA, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, 52242, IA, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 48824, MI, USA.
| |
Collapse
|
16
|
Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites. Appl Microbiol Biotechnol 2016; 100:7297-309. [DOI: 10.1007/s00253-016-7559-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
|