1
|
Shen J, Sun H, Chu J, Gong X, Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect Agent Cancer 2024; 19:13. [PMID: 38641803 PMCID: PMC11027553 DOI: 10.1186/s13027-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Cervical cancer is a common malignancy in women, with high incidence rate and mortality. Persistent infection of high-risk human papillomavirus (HPV) is the most important risk factor for cervical cancer and precancerous lesions. Cervicovaginal microbiota (CVM) plays an essential role in the defense of HPV infections and prevention of subsequent lesions. Dominance of Lactobacillus is the key of CVM homeostasis, which can be regulated by host, exogenous and endogenous factors. Dysbiosis of CVM, including altered microbial, metabolic, and immune signatures, can contribute to persist HPV infection, leading to cervical cancer. However, there is no evidence of the causality between CVM and cervical cancer, and the underlying mechanism remains unexplored. Considering the close correlation between CVM dysbiosis and persistent HPV infection, this review will overview CVM, its role in cervical cancer development and related mechanisms, and the prospects for therapeutic applications.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Hao Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| |
Collapse
|
2
|
Zahirović A, Berlec A. Targeting IL-6 by engineered Lactococcus lactis via surface-displayed affibody. Microb Cell Fact 2022; 21:143. [PMID: 35842694 PMCID: PMC9287920 DOI: 10.1186/s12934-022-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulated production of interleukin (IL)-6 is implicated in the pathology of inflammatory bowel disease (IBD). Neutralization of IL-6 in the gut by safe probiotic bacteria may help alleviate intestinal inflammation. Here, we developed Lactococcus lactis with potent and selective IL-6 binding activity by displaying IL-6-specific affibody on its surface. RESULTS Anti-IL-6 affibody (designated as ZIL) was expressed in fusion with lactococcal secretion peptide Usp45 and anchoring protein AcmA. A high amount of ZIL fusion protein was detected on bacterial surface, and its functionality was validated by confocal microscopy and flow cytometry. Removal of IL-6 from the surrounding medium by the engineered L. lactis was evaluated using enzyme-linked immunosorbent assay. ZIL-displaying L. lactis sequestered recombinant human IL-6 from the solution in a concentration-dependent manner by up to 99% and showed no binding to other pro-inflammatory cytokines, thus proving to be highly specific for IL-6. The removal was equally efficient across different IL-6 concentrations (150-1200 pg/mL) that were found to be clinically relevant in IBD patients. The ability of engineered bacteria to capture IL-6 from cell culture supernatant was assessed using immunostimulated human monocytic cell lines (THP-1 and U-937) differentiated into macrophage-like cells. ZIL-displaying L. lactis reduced the content of IL-6 in the supernatants of both cell lines in a concentration-dependent manner by up to 94%. Dose response analysis showed that bacterial cell concentrations of 107 and 109 CFU/mL (colony forming units per mL) were required for half-maximal removal of recombinant and macrophage-derived IL-6, respectively. CONCLUSION The ability of ZIL-displaying L. lactis to bind pathological concentrations of IL-6 at common bacterial doses suggests physiological significance.
Collapse
Affiliation(s)
- Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia. .,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Wei W, Xie LZ, Xia Q, Fu Y, Liu FY, Ding DN, Han FJ. The role of vaginal microecology in the cervical cancer. J Obstet Gynaecol Res 2022; 48:2237-2254. [PMID: 35815344 DOI: 10.1111/jog.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
AIM To explore the role of vaginal microecology in cervical cancer, so as to increase the understanding of cervical cancer and lay a foundation for future large-sample clinical trials. METHODS We reviewed and summarized the literature comprehensively, and discussed the relationship between vaginal microecology and HPV infection, CIN progression and cervical cancer, as well as the potential molecular mechanism and the prospects of probiotics and prebiotics in future cancer treatments. RESULTS With the popularization of high-throughput sequencing technology and the development of bioinformatics analysis technology, many evidences show that the increase in the diversity of the bacterial community in the vaginal microecological environment and the decrease in the number of Lactobacilli are associated with the continuous infection of HPV and the further development of CIN, cervical cancer-related. CONCLUSIONS Vaginal microecological imbalance has an important impact on the occurrence and development of cervical cancer. However, the pathogenesis is not completely clear, and more high-level basic research and longitudinal clinical studies are needed to verify.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang-Zhen Xie
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Xia
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-Yuan Liu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Bacteria-Based Microdevices for the Oral Delivery of Macromolecules. Pharmaceutics 2021; 13:pharmaceutics13101610. [PMID: 34683903 PMCID: PMC8537518 DOI: 10.3390/pharmaceutics13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The oral delivery of macromolecules is quite challenging due to environmental insults and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we summarize the main classes of macromolecules that are produced and delivered through the oral ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment. Finally, we highlight the advantages as well as the limitations of these engineered bacteria used as platforms for the oral delivery of macromolecules and also propose their potential for clinical translation. The results summarized in this review article would contribute to the invention of next-generation bacteria-based systems for the oral delivery of macromolecules.
Collapse
|
5
|
Kudela E, Liskova A, Samec M, Koklesova L, Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg D, Kubatka P, Biringer K. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J 2021; 12:199-220. [PMID: 34194585 PMCID: PMC8192654 DOI: 10.1007/s13167-021-00244-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.
Collapse
Affiliation(s)
- Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Jessenius Faculty of Medicine, Biomedical Centre Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Busselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| |
Collapse
|
6
|
Zhidai Decoction Inhibits Cervical Cancer through Regulation of Vaginal Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8940582. [PMID: 32849905 PMCID: PMC7439176 DOI: 10.1155/2020/8940582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/25/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the top lethal malignancies among women worldwide. The current treatment methods have so many drawbacks that new treatment methods need to be developed. Zhidai Decoction (ZDD) is an effective traditional Chinese herbal formulation for gynecological diseases. Its main effect is controlling abnormal leucorrhea which is a typical early clinical manifestation of cervical cancer. However, how ZDD directly affects cervical cancer has not been addressed. In this study, we established a mouse cervical cancer U14 cell subcutaneous transplantation tumor model and took an early intervention with ZDD to evaluate the antitumor effect of ZDD. In addition, we also investigated the regulatory effects of ZDD on the vaginal microbiota using 16S rRNA analysis in this study. Our results showed that ZDD can significantly improve systemic symptoms and reduce vaginal secretions of tumor-bearing mice. Compared with the CCM group (the cervical cancer model group), in the ZDD-treated group, the tumor inhibitory rate was 37.90%, the average daily food intake of mice was increased to 5.27 ± 0.74 g (P < 0.05), and the survival time was obviously prolonged to 21 days (P < 0.05). Analysis of the sequencing results of 16S rRNA showed that the main microbial genera of the CCM group were Pasteurella (27.20%) and Helicobacter (18.50%), while those in the ZDD group were Staphylococcus (13.22%) and Lactobacillus (4.68%). It revealed that ZDD has the effect of regulating the vaginal microbiota of cervical cancer, especially in increasing the relative abundance of Lactobacillus and Staphylococcus and decreasing the relative abundance of Pasteurella and Helicobacter. The analysis also showed that ZDD could adjust microbiota structure, species abundance, and community compositions of vaginal microbiota. In conclusion, ZDD displayed inhibitory effect on cervical cancer, and it might be based on restoring the balance of vaginal microbiota. Furthermore, our conclusion supports the promotion of ZDD in the early treatment of cervical cancer.
Collapse
|
7
|
Zupančič Š, Škrlec K, Kocbek P, Kristl J, Berlec A. Effects of Electrospinning on the Viability of Ten Species of Lactic Acid Bacteria in Poly(Ethylene Oxide) Nanofibers. Pharmaceutics 2019; 11:E483. [PMID: 31540399 PMCID: PMC6781326 DOI: 10.3390/pharmaceutics11090483] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria can have beneficial health effects and be used for the treatment of various diseases. However, there remains the challenge of encapsulating probiotics into delivery systems with a high viability and encapsulation efficacy. The electrospinning of bacteria is a novel and little-studied method, and further investigation of its promising potential is needed. Here, the morphology, zeta potential, hydrophobicity, average cell mass, and growth characteristics of nine different species of Lactobacillus and one of Lactococcus are characterized. The electrospinning of polymer solutions containing ~10 log colony forming units (CFU)/mL lactic acid bacteria enabled the successful incorporation of all bacterial species tested, from the smallest (0.74 µm; Lactococcus lactis) to the largest (10.82 µm; Lactobacillus delbrueckii ssp. bulgaricus), into poly(ethylene oxide) nanofibers with an average diameter of ~100 nm. All of these lactobacilli were viable after incorporation into nanofibers, with 0 to 3 log CFU/mg loss in viability, depending on the species. Viability correlated with the hydrophobicity and extreme length of lactic acid bacteria, whereas a horizonal or vertical electrospinning set-up did not have any role. Therefore, electrospinning represents a promising method for the incorporation of lactic acid bacteria into solid delivery systems, while drying the bacterial dispersion at the same time.
Collapse
Affiliation(s)
- Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
9
|
Plavec TV, Štrukelj B, Berlec A. Screening for New Surface Anchoring Domains for Lactococcus lactis. Front Microbiol 2019; 10:1879. [PMID: 31456787 PMCID: PMC6700490 DOI: 10.3389/fmicb.2019.01879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
The display of recombinant proteins on bacterial surfaces is a developing research area with a wide range of potential biotechnological applications. The lactic acid bacterium Lactococcus lactis is an attractive host for such surface display, and a promising vector for in vivo delivery of bioactive proteins. Surface-displayed recombinant proteins are usually anchored to the bacterial cell wall through anchoring domains. Here, we investigated alternatives to the commonly applied lactococcal lysine motif (LysM)-containing surface anchoring domain, the C-terminus of AcmA (cAcmA). We screened 15 anchoring domains of lactococcal or phage origins that belong to the Pfam categories LPXTG, LysM, CW_1, Cpl-7, WxL, SH3, and ChW, which can provide non-covalent or covalent binding to the cell wall. LPXTG, LysM, the duplicated CW_1 and SH3 domains promoted significant surface display of two model proteins, B domain and DARPin I07, although the display achieved was lower than that for the reference anchoring domain, cAcmA. On the other hand, the ChW-containing anchoring domain of the lactococcal phage AM12 endolysin (cAM12) demonstrated surface display comparable to that of cAcmA. The anchoring ability of cAM12 was confirmed by enabling non-covalent heterologous anchoring of the B domain on wild-type bacteria, as well as anchoring of CXCL8-binding evasin-3, which provided potential therapeutic applicability; both were displayed to an extent comparable to that of cAcmA. We have thereby demonstrated the effective use of different protein anchoring domains in L. lactis, with ChW-containing cAM12 the most promising alternative to the established approaches for surface display on L. lactis.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Qiao XW, Yu XM, Li PC, Yu SS, Chen J, Zhang YP, Yang L, Hou LT, Zheng QS, Hou JB. Immune efficacy of a porcine circovirus type 2 vaccine purified using Gram-positive enhancer matrix surface display technology. J Appl Microbiol 2019; 127:658-669. [PMID: 31183947 DOI: 10.1111/jam.14346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Abstract
AIMS Purification of porcine circovirus type 2 (PCV2) using Gram-positive enhancer matrix (GEM) surface display technology and immunogenicity evaluation of the purified antigen. METHODS AND RESULTS A recombinant bifunctional protein containing a protein anchor domain and a 'virus anchor' domain was designed as a protein linker (PL) between PCV2 and GEM particles. By incubating with PL and GEM particles sequentially, PCV2 could be purified and enriched through a simple centrifugation process with GEM surface display technology. Our data showed that one unit (2·5 × 109 particles) of GEM particles with 80 μg PL could purify 100 ml of PCV2-containing culture supernatant (viral titre: 106·5 TCID50 per ml-1 ) with a recovery rate up to 99·6%. The impurity removal efficiency of this method, calculated according to decreased total protein content during purification, was approximately 98%. Furthermore, in vivo experimentation showed that piglets immunized with purified PCV2 could elicit strong immune responses to prevent against PCV2 infection. CONCLUSION Porcine circovirus type 2 could be efficiently purified and enriched with GEM display technology via a crucial PL, and the purified PCV2 could elicit effective immune responses against PCV2 infection. SIGNIFICANCE AND IMPACT OF THE STUDY The GEM-based purification method established here is cost-efficient and high-throughput, and may represent a promising large-scale purification method for PCV2 vaccine production.
Collapse
Affiliation(s)
- X-W Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, China
| | - X-M Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - P-C Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - S-S Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - J Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Y-P Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - L Yang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - L-T Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Q-S Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - J-B Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Engineered Lactococcus lactis Secreting IL-23 Receptor-Targeted REX Protein Blockers for Modulation of IL-23/Th17-Mediated Inflammation. Microorganisms 2019; 7:microorganisms7050152. [PMID: 31137908 PMCID: PMC6560508 DOI: 10.3390/microorganisms7050152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis, a probiotic bacterium of food origin, has recently been demonstrated as a suitable strain for the production and in vivo delivery of therapeutically important proteins into the gut. We aimed to engineer recombinant L. lactis cells producing/secreting REX binding proteins that have been described as IL-23 receptor (IL-23R) blockers and IL-23R antagonists suppressing the secretion of cytokine IL-17A, a pivotal step in the T-helper Th17-mediated pro-inflammatory cascade, as well as in the development of autoimmune diseases, including inflammatory bowel disease (IBD). To reach this goal, we introduced cDNA sequences coding for REX009, REX115, and REX125 proteins into plasmid vectors carrying a Usp45 secretion signal, a FLAG tag sequence consensus, and a LysM-containing cA surface anchor (AcmA), thus allowing cell-surface peptidoglycan anchoring. These plasmids, or their non-FLAG/non-AcmA versions, were introduced into L. lactis host cells, thus generating unique recombinant L. lactis-REX strains. We demonstrate that all three REX proteins are expressed in L. lactis cells and are efficiently displayed on the bacterial surface, as tested by flow cytometry using an anti-FLAG antibody conjugate. Upon 10-fold concentration of the conditioned media, a REX125 secretory variant can be detected by Western blotting. To confirm that the FLAG/non-FLAG REX proteins displayed by L. lactis retain their binding specificity, cell-surface interactions of REX proteins with an IL-23R-IgG chimera were demonstrated by flow cytometry. In addition, statistically significant binding of secreted REX009 and REX115 proteins to bacterially produced, soluble human IL-23R was confirmed by ELISA. We conclude that REX-secreting L. lactis strains were engineered that might serve as IL-23/IL-23R blockers in an experimentally induced mouse model of colitis.
Collapse
|
12
|
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl Microbiol Biotechnol 2019; 103:2053-2066. [DOI: 10.1007/s00253-019-09628-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
13
|
Škrlec K, Ručman R, Jarc E, Sikirić P, Švajger U, Petan T, Perišić Nanut M, Štrukelj B, Berlec A. Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities. Appl Microbiol Biotechnol 2018; 102:10103-10117. [PMID: 30191288 DOI: 10.1007/s00253-018-9333-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria (LAB) are attractive hosts for the expression of heterologous proteins and can be engineered to deliver therapeutic proteins or peptides to mucosal surfaces. The gastric stable pentadecapeptide BPC-157 is able to prevent and treat gastrointestinal inflammation by reducing the production of reactive oxygen species (ROS). In this study, we used LAB Lactococcus lactis as a vector to deliver BPC-157 by surface display and trypsin shedding or by secretion to the growth medium. Surface display of BPC-157 was achieved by fusing it with basic membrane protein A (BmpA) or with the peptidoglycan binding domain of AcmA and Usp45 secretion signal. While the expression of BmpA-fusion proteins was higher than that of AcmA/Usp45-fusion protein, the surface display ability of BPC-157 was approximately 14-fold higher with AcmA/Usp45-fusion protein. Release of BPC-157 from the bacterial surface or from isolated fusion proteins by trypsinization was demonstrated with anti-BPC-157 antibodies or by mass spectrometry. The concentration of BPC-157 delivered by surface display via AcmA/Usp45-fusion was 30 ng/ml. This increased to 117 ng/ml by Usp45 signal-mediated secretion, making the latter the most effective lactococcal delivery approach for BPC-157. Secreted BPC-157 significantly decreased ROS production in 149BR fibroblast cell model, suggesting its potential benefit in the treatment of intestinal inflammations. Additionally, a comparison of different modes of small peptide delivery by L. lactis, performed in the present study, will facilitate the future use of L. lactis as peptide delivery vehicle.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Predrag Sikirić
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Zahirović A, Lunder M. Microbial Delivery Vehicles for Allergens and Allergen-Derived Peptides in Immunotherapy of Allergic Diseases. Front Microbiol 2018; 9:1449. [PMID: 30013543 PMCID: PMC6036130 DOI: 10.3389/fmicb.2018.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Allergen-specific immunotherapy represents the only available curative approach to allergic diseases. The treatment has proven effective, but it requires repetitive administrations of allergen extracts over 3-5 years and is often associated with adverse events. This implies the need for novel therapeutic strategies with reduced side effects and decreased treatment time, which would improve patients' compliance. Development of vaccines that are molecularly well defined and have improved safety profile in comparison to whole allergen extracts represents a promising approach. Molecular allergy vaccines are based on major allergen proteins or allergen-derived peptides. Often, such vaccines are associated with lower immunogenicity and stability and therefore require an appropriate delivery vehicle. In this respect, viruses, bacteria, and their protein components have been intensively studied for their adjuvant capacity. This article provides an overview of the microbial delivery vehicles that have been tested for use in allergy immunotherapy. We review in vitro and in vivo data on the immunomodulatory capacity of different microbial vehicles for allergens and allergen-derived peptides and evaluate their potential in development of allergy vaccines. We also discuss relevant aspects and challenges concerning the use of microbes and their components in immunotherapy of allergic diseases.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Abstract
Cervical cancer is a common malignant cancer among women worldwide. Changes in the vaginal microecological environment lead to multiple gynecological diseases, including cervical cancer. Recent research has shown that Lactobacillus may play an important role in the occurrence and development of cervical cancer. This review explores the role of Lactobacillus in cervical cancer. A total of 29 articles were included after identification and screening. The pertinent literature on Lactobacillus in cervical cancer from two perspectives, including clinical studies and experimental studies, was analyzed. An association network for the mechanism by which Lactobacillus induces cervical cancer was constructed. In addition, we provide direction and insight for further research on the role of Lactobacillus in cervical cancer.
Collapse
Affiliation(s)
- Xi Yang
- Department of Intervention and Radiotherapy, Huzhou Central Hospital
| | - Miao Da
- Medical College of Nursing, Huzhou University
| | | | - Quan Qi
- Department of Medical Oncology
| | - Chun Zhang
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang Province, People's Republic of China
| | | |
Collapse
|
16
|
Berlec A, Škrlec K, Kocjan J, Olenic M, Štrukelj B. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci Rep 2018; 8:1009. [PMID: 29343791 PMCID: PMC5772564 DOI: 10.1038/s41598-018-19402-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Lactococcus lactis is a food-grade lactic acid bacterium that is used in the dairy industry as a cell factory and as a host for recombinant protein expression. The nisin-controlled inducible expression (NICE) system is frequently applied in L. lactis; however new tools for its genetic modification are highly desirable. In this work NICE was adapted for dual protein expression. Plasmid pNZDual, that contains two nisin promoters and multiple cloning sites (MCSs), and pNZPolycist, that contains a single nisin promoter and two MCSs separated by the ribosome binding site, were constructed. Genes for the infrared fluorescent protein and for the human IgG-binding DARPin were cloned in all possible combinations to assess the protein yield. The dual promoter plasmid pNZDual enabled balanced expression of the two model proteins. It was exploited for the development of a single-plasmid inducible CRISPR-Cas9 system (pNZCRISPR) by using a nisin promoter, first to drive Cas9 expression and, secondly, to drive single guide RNA transcription. sgRNAs against htrA and ermR directed Cas9 against genomic or plasmid DNA and caused changes in bacterial growth and survival. Replacing Cas9 by dCas9 enabled CRISPR interference-mediated silencing of the upp gene. The present study introduces a new series of plasmids for advanced genetic modification of lactic acid bacterium L. lactis.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Janja Kocjan
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Maria Olenic
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, Charles University in Prague, 500 05, Hradec Králové, Czech Republic
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 2017; 10:1732-1743. [PMID: 28736998 PMCID: PMC5658612 DOI: 10.1111/1751-7915.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/26/2023] Open
Abstract
Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine‐binding proteins evasin‐1, evasin‐3 and evasin‐4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin‐displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis‐expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin‐3‐displaying L. lactis removed 76.0% of IL‐1β‐induced CXCL8 from the supernatant of Caco‐2 epithelial cells. It also prevented secretion of CXCL8 from Caco‐2 cells in a time‐dependent manner when added before induction with IL‐1β. Evasin‐displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Puhova 10, SI-1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
18
|
Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol 2016; 100:9407-9421. [DOI: 10.1007/s00253-016-7842-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
|
19
|
Zadravec P, Marečková L, Petroková H, Hodnik V, Perišić Nanut M, Anderluh G, Štrukelj B, Malý P, Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS One 2016; 11:e0162625. [PMID: 27606705 PMCID: PMC5015993 DOI: 10.1371/journal.pone.0162625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Collapse
Affiliation(s)
- Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Lucie Marečková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
20
|
Li PC, Qiao XW, Zheng QS, Hou JB. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis. Vaccine 2016; 34:696-702. [DOI: 10.1016/j.vaccine.2015.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022]
|
21
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
22
|
Zadravec P, Štrukelj B, Berlec A. Heterologous surface display on lactic acid bacteria: non-GMO alternative? Bioengineered 2015; 6:179-83. [PMID: 25880164 DOI: 10.1080/21655979.2015.1040956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.
Collapse
Affiliation(s)
- Petra Zadravec
- a Department of Biotechnology ; Jožef Stefan Institute ; Ljubljana , Slovenia
| | | | | |
Collapse
|