1
|
Lee S, Park S, Kim JN, Lee SO, Lee JE, Lee SH. Polymorphisms in the type A blaZ gene as determinants of the cefazolin inoculum effect in Staphylococcus aureus. Antimicrob Agents Chemother 2025; 69:e0110624. [PMID: 39655911 PMCID: PMC11784186 DOI: 10.1128/aac.01106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025] Open
Abstract
Plasmids containing the wild-type (WT) or mutant type A blaZ (blaZA) gene (mutations at codons 226, 229, or both 226 and 229) were constructed and transformed into Staphylococcus aureus RN4220, yielding the strains WT-blaZ, M226-blaZ, M229-blaZ, and MB-blaZ. The high-inoculum cefazolin MIC was significantly lower in MB-blaZ and M226-blaZ than in WT-blaZ but not in M229-blaZ, suggesting that the single nucleotide polymorphism at codon 226 in blaZA contributes to the cefazolin inoculum effect.
Collapse
Affiliation(s)
- Shinwon Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sohee Park
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeong Nam Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Soon Ok Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sun Hee Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
2
|
Long DR, Holmes EA, Lo HY, Penewit K, Almazan J, Hodgson T, Berger NF, Bishop ZH, Lewis JD, Waalkes A, Wolter DJ, Salipante SJ. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog 2024; 20:e1012394. [PMID: 38991026 PMCID: PMC11265673 DOI: 10.1371/journal.ppat.1012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nova F. Berger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Zoe H. Bishop
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Zhuang H, Chen M, Hu D, Liu L, Wu D, Zhang H, Wang Z, Jiang S, Chen Y, Zhu F, Hong Y, Lei T, Wang H, Sun L, Ji S, Yu Y, Chen Y. Role of tcaA, a potential target as a ceftobiprole resistance breaker in MRSA β-lactam resistance. Int J Antimicrob Agents 2024; 64:107185. [PMID: 38692492 DOI: 10.1016/j.ijantimicag.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Using a random forest algorithm, we previously found that teicoplanin-associated gene A (tcaA) might play a role in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, which we have investigated further here. METHODS Representative MRSA strains of prevalent clones were selected to identify the role of tcaA in the MRSA response to β-lactams. tcaA genes were deleted by homologous recombination in the selected MRSA strains, and antibiotic susceptibility tests were applied to evaluate the effect of tcaA on the minimum inhibitory concentrations (MICs) of glycopeptides and β-lactams. Scanning electron microscopy, RNA sequencing, and quantitative reverse transcription-polymerase chain reaction were performed to explore the mechanism of tcaA in MRSA resistance to β-lactams. RESULTS The MIC of penicillin plus clavulanate decreased from 3 mg/L to 0.064 mg/L and that of oxacillin decreased from 16 to 0.5 mg/L when tcaA was knocked out in the LAC strain. Compared with wild-type MRSA isolates, when tcaA was deleted, all selected strains were more susceptible to β-lactams. Susceptibility to ceftobiprole was restored in the ceftobiprole-resistant strain when tcaA was deleted. tcaA knockout caused "log-like" abnormal division of MRSA, and tcaA deficiency mediated low expression of mecA, ponA, and murA2. CONCLUSIONS Machine learning is a reliable tool for identifying drug resistance-related genes. tcaA may be involved in S. aureus cell division and may affect mecA, ponA, and murA2 expression. Furthermore, tcaA is a potential resistance breaker target for β-lactams, including ceftobiprole, in MRSA.
Collapse
Affiliation(s)
- Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongping Hu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Disease, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lin Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dandan Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqin Hong
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lewis JD, Salipante SJ. Development of advanced control material for reverse transcription-mediated bacterial nucleic acid amplification tests. J Clin Microbiol 2024; 62:e0024324. [PMID: 38629844 PMCID: PMC11237385 DOI: 10.1128/jcm.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Detection of bacterial RNA by nucleic acid amplification tests (NAATs), such as reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP), offers distinct advantages over DNA-based methods. However, such assays also present challenges in ascertaining positive and internal control material that can reliably monitor success over all phases of testing (bacterial lysis, nucleic acid recovery, reverse transcription, amplification, and signal detection): since they are unable to distinguish between amplification of bacterial RNA transcripts and the DNA templates that encode them, using intact organisms as controls can inform cell lysis but not successful detection of RNA. We developed a control strategy for RNA-based bacterial NAATs that allows ready discrimination of RNA from DNA templates using self-splicing bacterial introns, such that those nucleic acids ultimately encode different sequences. We engineered two vectors encoding synthetic transgenes based on this principle, one that is active in the Gram-negative bacterium Escherichia coli and one that functions in both E. coli and the Gram-positive organism Staphylococcus aureus. We subsequently designed RT-LAMP assays that either target RNA and DNA from transgenic organisms or target RNA exclusively and demonstrated the specificity of amplification using purified nucleic acids. Using multiplex fluorescent RT-LAMP of heat-lysed specimens, we showed the practicality of deploying such transgenic organisms as an internal control to ascertain sample integrity and assay performance during clinical diagnostic testing. Our approach has broad utility for RNA-based bacterial NAATs, especially point-of-care assays and other applications where nucleic acids are nonspecifically liberated for testing.
Collapse
Affiliation(s)
- Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Liu L, Zhuang H, Wang Y, Tu Y, Yu Y, Chen Y, Wu X. β-Hemolysin, not agrA mutation, inhibits the hemolysis of α-hemolysin in Staphylococcus aureus laboratory and clinical strains. mSphere 2024; 9:e0067323. [PMID: 38289073 PMCID: PMC10900901 DOI: 10.1128/msphere.00673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024] Open
Abstract
Staphylococcus aureus produces various hemolysins regulated by the Agr-QS system, except β-hemolysin encoded by the gene hlb. A classical laboratory S. aureus strain RN4220 displays only the β-hemolysin phenotype. It was suspected that the 8A mutation at the end of its agrA gene delayed the expressions of hla and RNAIII, then failed to express α- and δ-hemolysins. However, hla gene expression was detected at the later culture time without α-hemolysin phenotype, the reason for such a phenotype has not been clearly understood. We created hlb knockout and complementary mutants via homologous recombination in RN4220 and NRS049, two strains that normally produce β-hemolysin and carry agrA mutation. We found interestingly that the presence or absence of α-hemolysin phenotype in such strains depended on the expression of β-hemolysin instead of agrA mutations, which only inhibited δ-hemolysin expression. The hemolysis phenotype was verified by the Christie-Atkinson-Munch-Peterson (CAMP) test. Quantitative reverse transcription PCR was carried out to evaluate the relative gene expressions of hlb, hla, and RNAIII. The construction of mutants did not affect the agrA mutation status. We demonstrate that the absence of α-hemolysin in S. aureus RN4220 and NRS049 strains is attributed to their production of β-hemolysin instead of agrA mutation. Our findings broaden the understanding of the molecular mechanisms that control hemolysin expression in S. aureus that is crucial for the development of new therapeutic strategies to combat S. aureus infections. IMPORTANCE α-Hemolysin is a critical virulence factor in Staphylococcus aureus and its expression is largely controlled by the Agr-QS system. Nonetheless, the hemolysis phenotype and the regulation of the Agr-QS system in S. aureus still hold many mysteries. Our study finds that it is the expression of β- hemolysin rather than the agrA mutation that inhibits the function of the α-hemolysin in an important S. aureus strain RN4220 and a clinical strain presents a similar phenotype, which clarifies the misunderstood hemolytic phenotype and mechanism of S. aureus. Our findings highlight the interactions among different toxins and their biological roles, combined with QS system regulation, which is ultimately the true underlying cause of its virulence. This emphasizes the importance of considering the collaborative action of various factors in the infection process caused by this significant human pathogen.
Collapse
Affiliation(s)
- Lin Liu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hemu Zhuang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Wu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Rondthaler S, Sarker B, Howitz N, Shah I, Andrews LB. Toolbox of Characterized Genetic Parts for Staphylococcus aureus. ACS Synth Biol 2024; 13:103-118. [PMID: 38064657 PMCID: PMC10805105 DOI: 10.1021/acssynbio.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Staphylococcus aureus is an important clinical bacterium prevalent in human-associated microbiomes and the cause of many diseases. However, S. aureus has been intractable to synthetic biology approaches due to limited characterized genetic parts for this nonmodel Gram-positive bacterium. Moreover, genetic manipulation of S. aureus has relied on cumbersome and inefficient cloning strategies. Here, we report the first standardized genetic parts toolbox for S. aureus, which includes characterized promoters, ribosome binding sites, terminators, and plasmid replicons from a variety of bacteria for precise control of gene expression. We established a standard relative expression unit (REU) for S. aureus using a plasmid reference and characterized genetic parts in standardized REUs using S. aureus ATCC 12600. We constructed promoter and terminator part plasmids that are compatible with an efficient Type IIS DNA assembly strategy to effectively build multipart DNA constructs. A library of 24 constitutive promoters was built and characterized in S. aureus, which showed a 380-fold activity range. This promoter library was also assayed in Bacillus subtilis (122-fold activity range) to demonstrate the transferability of the constitutive promoters between these Gram-positive bacteria. By applying an iterative design-build-test-learn cycle, we demonstrated the use of our toolbox for the rational design and engineering of a tetracycline sensor in S. aureus using the PXyl-TetO aTc-inducible promoter that achieved 25.8-fold induction. This toolbox greatly expands the growing number of genetic parts for Gram-positive bacteria and will allow researchers to leverage synthetic biology approaches to study and engineer cellular processes in S. aureus.
Collapse
Affiliation(s)
- Stephen
N. Rondthaler
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Xiao Z, Qu Z, Liu N, Wang J, Zhao J, Liu J, Wang L, Huang X, Zhang Q, Gao Y, Wang J, Yu Z, Guan J, Liu H. Molecular epidemiological characteristics and genetic evolutionary relationships of methicillin-resistant Staphylococcus aureus of different avian origins in Qingdao, China, using whole-genome sequencing. J Vet Res 2023; 67:169-177. [PMID: 38143828 PMCID: PMC10740325 DOI: 10.2478/jvetres-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/12/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction To understand the prevalence of avian methicillin-resistant Staphylococcus aureus (MRSA) and the current status of drug resistance in Qingdao, a comprehensive molecular epidemiological investigation and analysis of evolutionary relationships of MRSA isolates from broiler and layer chickens and waterfowl was conducted. Material and Methods One hundred and two avian MRSA strains were identified by multi-locus sequence typing, staphylococcal protein A (spa) and staphylococcal cassette chromosome mec (SCCmec) typing, and whole-genome sequencing. Results The sequence type (ST) 9-t899-SCCmec IVb type represented the highest proportion of avian-derived MRSA strains (71.57%), with ST398 type strains occasionally observed in broilers and waterfowl. The poultry-derived MRSA strains were all resistant to eight or more antimicrobials. Avian-derived MRSA strains carried 20 resistance genes, 109 virulence genes and 10 plasmids. Strains carrying the cfr oxazolidinone resistance gene were occasionally seen in broiler- and layer-derived MRSA. Single nucleotide polymorphism (SNP) core genome evolution and locus difference analysis showed that the closest strains were all of ST9-t899 type (to which also affiliated the highest number of strains) and this type occurred on all three kinds of poultry farm, but the SNP difference loci between strains of the same type ranged from 0 to 1472. Conclusion The dominant type of MRSA from different poultry sources in Qingdao is ST9-t899-SCCmec IVb, which is commonly resistant to a variety of antimicrobial drugs and carries a variety of resistance genes and a large number of virulence genes. Sequence type 9-t899 type is widely spread among the three kinds of poultry investigated, but there are differences in affiliations.
Collapse
Affiliation(s)
- Zhen Xiao
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhina Qu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Na Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Juan Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Jianmei Zhao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junhui Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Lin Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Xiumei Huang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Qingqing Zhang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Yubin Gao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junwei Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhiyong Yu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Jiajia Guan
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| |
Collapse
|
8
|
Long DR, Penewit K, Lo HY, Almazan J, Holmes EA, Bryan AB, Wolter DJ, Lewis JD, Waalkes A, Salipante SJ. In Vitro Selection Identifies Staphylococcus aureus Genes Influencing Biofilm Formation. Infect Immun 2023; 91:e0053822. [PMID: 36847490 PMCID: PMC10016075 DOI: 10.1128/iai.00538-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Staphylococcus aureus generates biofilms during many chronic human infections, which contributes to its growth and persistence in the host. Multiple genes and pathways necessary for S. aureus biofilm production have been identified, but knowledge is incomplete, and little is known about spontaneous mutations that increase biofilm formation as infection progresses. Here, we performed in vitro selection of four S. aureus laboratory strains (ATCC 29213, JE2, N315, and Newman) to identify mutations associated with enhanced biofilm production. Biofilm formation increased in passaged isolates from all strains, exhibiting from 1.2- to 5-fold the capacity of parental lines. Whole-genome sequencing identified nonsynonymous mutations affecting 23 candidate genes and a genomic duplication encompassing sigB. Six candidate genes significantly impacted biofilm formation as isogenic transposon knockouts: three were previously reported to impact S. aureus biofilm formation (icaR, spdC, and codY), while the remaining three (manA, narH, and fruB) were newly implicated by this study. Plasmid-mediated genetic complementation of manA, narH, and fruB transposon mutants corrected biofilm deficiencies, with high-level expression of manA and fruB further enhancing biofilm formation over basal levels. This work recognizes genes not previously identified as contributing to biofilm formation in S. aureus and reveals genetic changes able to augment biofilm production by that organism.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew B. Bryan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
9
|
Liu Q, Li D, Wang N, Guo G, Shi Y, Zou Q, Zhang X. Identification and Application of a Panel of Constitutive Promoters for Gene Overexpression in Staphylococcus aureus. Front Microbiol 2022; 13:818307. [PMID: 35295303 PMCID: PMC8918988 DOI: 10.3389/fmicb.2022.818307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a leading pathogen that is currently the most common cause of infection in hospitalized patients. An in-depth genetic analysis of S. aureus virulence genes contributing to pathogenesis is needed to develop novel antimicrobial therapies. However, tools for genetic manipulation in S. aureus are limited, particularly those for gene expression. Here, 38 highly expressed genes were identified in S. aureus USA300_FPR3757 via RNA-seq. Promoter regions from 30 of these genes were successfully cloned, of which 20 promoters exhibited a wide range of activity. By utilizing these active promoters, 20 S. aureus-Escherichia coli shuttle vectors were constructed and evaluated by expressing an egfp reporter gene. Expression of the egfp gene under the control of different promoters was confirmed and quantified by Western blotting and qPCR, which suggested that the activity of these promoters varied from 18 to 650% of the activity of PsarA, a widely used promoter for gene expression. In addition, our constructed vectors were verified to be highly compatible with gene expression in different S. aureus strains. Furthermore, these vectors were evaluated and used to overexpress two endogenous proteins in S. aureus, namely, catalase and the transcriptional repressor of purine biosynthesis (PurR). Meanwhile, the physiological functions and phenotypes of overexpressed PurR and catalase in S. aureus were validated. Altogether, this evidence indicates that our constructed vectors provide a wide range of promoter activity on gene expression in S. aureus. This set of vectors carrying different constitutive promoters developed here will provide a powerful tool for the direct analysis of target gene function in staphylococcal cells.
Collapse
Affiliation(s)
- Qiang Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Liu,
| | - Daiyu Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Xiaokai Zhang,
| |
Collapse
|
10
|
Xiong M, Chen L, Zhao J, Xiao X, Zhou J, Fang F, Li X, Pan Y, Li Y. Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes tarM and tagN. Microbiol Spectr 2022; 10:e0150121. [PMID: 35170993 PMCID: PMC8849055 DOI: 10.1128/spectrum.01501-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus (S. aureus) can cause a broad spectrum of diseases ranging from skin infections to life-threatening diseases in both community and hospital settings. The surface-exposed wall teichoic acid (WTA) has a strong impact on host interaction, pathogenicity, horizontal gene transfer, and biofilm formation in S. aureus. The unusual S. aureus ST630 strains containing both ribitol-phosphate (RboP) WTA glycosyltransferase gene tarM and glycerol-phosphate (GroP) WTA glycosyltransferase gene tagN have been found recently. Native PAGE analysis showed that the WTA of tagN, tarM-encoding ST630 strains migrated slower than that of non-tagN-encoding ST630 strains, indicating the differences in WTA structure. Some mobile genetic elements (MGEs) such as the unique GroP-WTA biosynthetic gene cluster (SaGroWI), SCCmec element, and prophages that probably originated from the CoNS were identified in tagN, tarM-encoding ST630 strains. The SaGroWI element was first defined in S. aureus ST395 strain, which was refractory to exchange MGEs with typical RboP-WTA expressing S. aureus but could undergo horizontal gene transfer events with other species and genera via the specific bacteriophage Φ187. Overall, our data indicated that this rare ST630 was prone to acquire DNA from CoNS and might serve as a novel hub for the exchange of MGEs between CoNS and S. aureus. IMPORTANCE The structure of wall-anchored glycopolymers wall teichoic acid (WTA) produced by most Gram-positive bacteria is highly variable. While most dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate (RboP) WTA, the tagN, tarM-encoding ST630 lineage probably has a poly-glycerol-phosphate (GroP) WTA backbone like coagulase-negative staphylococci (CoNS). There is growing evidence that staphylococcal horizontal gene transfer depends largely on transducing helper phages via WTA as the receptor. The structural difference of WTA greatly affects the transfer of mobile genetic elements among various bacteria. With the growing advances in sequencing and analysis technologies, genetic analysis has revolutionized research activities in the field of the important pathogen S. aureus. Here, we analyzed the molecular characteristics of ST630 and found an evolutionary link between ST630 and CoNS. Elucidating the genetic information of ST630 lineage will contribute to understanding the emergence and diversification of new pathogenic strains in S. aureus.
Collapse
Affiliation(s)
- Mengyuan Xiong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Fang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinwei Li
- Medical School of Zhengzhou University, Zhengzhou, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
11
|
The Resistome and Mobilome of Multidrug-Resistant Staphylococcus sciuri C2865 Unveil a Transferable Trimethoprim Resistance Gene, Designated dfrE, Spread Unnoticed. mSystems 2021; 6:e0051121. [PMID: 34374564 PMCID: PMC8407400 DOI: 10.1128/msystems.00511-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus sciuri (MRSS) strain C2865 from a stranded dog in Nigeria was trimethoprim (TMP) resistant but lacked formerly described staphylococcal TMP-resistant dihydrofolate reductase genes (dfr). Whole-genome sequencing, comparative genomics, and pan-genome analyses were pursued to unveil the molecular bases for TMP resistance via resistome and mobilome profiling. MRSS C2865 comprised a species subcluster and positioned just above the intraspecies boundary. Lack of species host tropism was observed. S. sciuri exhibited an open pan-genome, while MRSS C2865 harbored the highest number of unique genes (75% associated with mobilome). Within this fraction, we discovered a transferable TMP resistance gene, named dfrE, which confers high-level TMP resistance in Staphylococcus aureus and Escherichia coli. dfrE was located in a novel multidrug resistance mosaic plasmid (pUR2865-34) encompassing adaptive, mobilization, and segregational stability traits. dfrE was formerly denoted as dfr_like in Exiguobacterium spp. from fish farm sediment in China but escaped identification in one macrococcal and diverse staphylococcal genomes in different Asian countries. dfrE shares the highest identity with dfr of soil-related Paenibacillus anaericanus (68%). Data analysis discloses that dfrE has emerged from a single ancestor and places S. sciuri as a plausible donor. C2865 unique fraction additionally enclosed novel chromosomal mobile islands, including a multidrug-resistant pseudo-SCCmec cassette, three apparently functional prophages (Siphoviridae), and an SaPI4-related staphylococcal pathogenicity island. Since dfrE seems not yet common in staphylococcal clinical specimens, our data promote early surveillance and enable molecular diagnosis. We evidence the genome plasticity of S. sciuri and highlight its role as a resourceful reservoir for adaptive traits. IMPORTANCE The discovery and surveillance of antimicrobial resistance genes (AMRG) and their mobilization platforms are critical to understand the evolution of bacterial resistance and to restrain further expansion. Limited genomic data are available on Staphylococcus sciuri; regardless, it is considered a reservoir for critical AMRG and mobile elements. We uncover a transferable staphylococcal TMP resistance gene, named dfrE, in a novel mosaic plasmid harboring additional resistance, adaptive, and self-stabilization features. dfrE is present but evaded detection in diverse species from varied sources geographically distant. Our analyses evidence that the dfrE-carrying element has emerged from a single ancestor and position S. sciuri as the donor species for dfrE spread. We also identify novel mobilizable chromosomal islands encompassing AMRG and three unrelated prophages. We prove high intraspecies heterogenicity and genome plasticity for S. sciuri. This work highlights the importance of genome-wide ecological studies to facilitate identification, characterization, and evolution routes of bacteria adaptive features.
Collapse
|
12
|
Fernandez JE, Perreten V, Schwendener S. The novel macrolide resistance genes mef(F) and msr(G) are located on a plasmid in Macrococcus canis and a transposon in Macrococcus caseolyticus. J Antimicrob Chemother 2021; 76:48-54. [PMID: 33118027 DOI: 10.1093/jac/dkaa405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To analyse macrolide resistance in a Macrococcus canis strain isolated from a dog with an ear infection, and determine whether the resistance mechanism is also present in other bacteria, and associated with mobile genetic elements. METHODS The whole genome of M. canis Epi0082 was sequenced using PacBio and Illumina technologies. Novel macrolide resistance determinants were identified through bioinformatic analysis, and functionality was demonstrated by expression in Staphylococcus aureus. Mobile genetic elements containing the novel genes were analysed in silico for strain Epi0082 as well as in other bacterial strains deposited in GenBank. RESULTS M. canis Epi0082 contained a 3212 bp operon with the novel macrolide resistance genes mef(F) and msr(G) encoding a efflux protein and an ABC-F ribosomal protection protein, respectively. Cloning in S. aureus confirmed that both genes individually confer resistance to the 14- and 15-membered ring macrolides erythromycin and azithromycin, but not the 16-membered ring macrolide tylosin. A reduced susceptibility to the streptogramin B pristinamycin IA was additionally observed when msr(G) was expressed in S. aureus under erythromycin induction. Epi0082 carried the mef(F)-msr(G) operon together with the chloramphenicol resistance gene fexB in a novel 39 302 bp plasmid pMiCAN82a. The mef(F)-msr(G) operon was also found in macrolide-resistant Macrococcus caseolyticus strains in the GenBank database, but was situated in the chromosome as part of a novel 13 820 bp or 13 894 bp transposon Tn6776. CONCLUSIONS The identification of mef(F) and msr(G) on different mobile genetic elements in Macrococcus species indicates that these genes hold potential for further dissemination of resistance to the clinically important macrolides in the bacterial population.
Collapse
Affiliation(s)
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sybille Schwendener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.00160-20. [PMID: 32122903 DOI: 10.1128/aac.00160-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal resistance islands containing the methicillin resistance gene mecD (McRI mecD ) have been reported in Macrococcus caseolyticus Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRI msr These elements were also integrated into the 3' end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5' end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRI msr elements in M. canis, M. caseolyticus, and Staphylococcus aureus Another McRI msr -like element identified in an M. canis strain lacked the classical att site at the 3' end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRI msr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRI msr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family.
Collapse
|
14
|
García-Martín AB, Schwendener S, Perreten V. The tva(A) Gene from Brachyspira hyodysenteriae Confers Decreased Susceptibility to Pleuromutilins and Streptogramin A in Escherichia coli. Antimicrob Agents Chemother 2019; 63:e00930-19. [PMID: 31307989 PMCID: PMC6709466 DOI: 10.1128/aac.00930-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
The tva(A) gene suspected to confer resistance to pleuromutilins in Brachyspira hyodysenteriae was tested for functionality in Escherichia coli AG100A and Staphylococcus aureus RN4220. Expression of the cloned tva(A) gene conferred decreased susceptibility to pleuromutilin (P) and streptogramin A (SA) antibiotics in E. coli and had a minor effect in S. aureus The finding provides evidence of the direct association of tva(A) with the PSA resistance phenotype.
Collapse
Affiliation(s)
- Ana B García-Martín
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sybille Schwendener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
16
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Guadamuro L, Flórez AB, Alegría Á, Vázquez L, Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res Int 2017; 100:522-528. [DOI: 10.1016/j.foodres.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
|
18
|
New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(48) on the Novel Plasmid pJW2311 in Staphylococcus xylosus. Antimicrob Agents Chemother 2017; 61:AAC.00066-17. [PMID: 28438941 DOI: 10.1128/aac.00066-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/14/2017] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of Staphylococcus xylosus strain JW2311 from bovine mastitis milk identified the novel 49.3-kb macrolide-lincosamide-streptogramin B (MLSB) resistance plasmid pJW2311. It contained the macrolide resistance gene mph(C), the macrolide-streptogramin B resistance gene msr(A), and the new MLSB resistance gene erm(48) and could be transformed into Staphylococcus aureus by electroporation. Functionality of erm(48) was demonstrated by cloning and expression in S. aureus.
Collapse
|
19
|
Dong X, Jin Y, Ming D, Li B, Dong H, Wang L, Wang T, Wang D. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 2017; 139:79-86. [PMID: 28522389 DOI: 10.1016/j.mimet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
Abstract
The understanding of the genetic mechanism of Staphylococcus aureus requires efficient tools, however, genetic manipulation in S. aureus is always laborious and time-consuming. Here we proposed a novel CRISPR/dCas9 interference method for the rapid knockdown of target genes. Furthermore, multiple genes can be repressed simultaneously by using this method.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yingli Jin
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China.
| | - Di Ming
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China
| | - Bangbang Li
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Haisi Dong
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Tiedong Wang
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China.
| | - Dacheng Wang
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Abstract
Penicillins are an important group of antibiotics used to treat various types of infections caused by Gram-positive bacteria. So far, the blaZ gene was the only known β-lactamase gene in staphylococci. However, other putative β-lactamases were identified, and one of them was shown to be a novel functional β-lactamase encoded by blaARL in Staphylococcus arlettae, further limiting treatment options. Whole-genome sequencing of penicillin-resistant Staphylococcus arlettae strain SAN1670 from bovine mastitis milk revealed a novel β-lactamase operon consisting of the β-lactamase-encoding gene blaARL, the antirepressor-encoding gene blaR1ARL, and the repressor-encoding gene blaIARL. The functionality of blaARL was demonstrated by gene expression in Staphylococcus aureus. The blaARL operon was chromosomally located in SAN1670 and present in 10 additional unrelated strains, suggesting intrinsic penicillin resistance in S. arlettae. Furthermore, a GenBank search revealed more unique potential β-lactamases in Staphylococcus species. IMPORTANCE Penicillins are an important group of antibiotics used to treat various types of infections caused by Gram-positive bacteria. So far, the blaZ gene was the only known β-lactamase gene in staphylococci. However, other putative β-lactamases were identified, and one of them was shown to be a novel functional β-lactamase encoded by blaARL in Staphylococcus arlettae, further limiting treatment options.
Collapse
|
21
|
Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep 2017; 7:43797. [PMID: 28272476 PMCID: PMC5341023 DOI: 10.1038/srep43797] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Macrococcus caseolyticus strains from bovine and canine origins were found to carry a novel mecD gene conferring resistance to all classes of β-lactams including anti-MRSA cephalosporins. Association of β-lactam resistance with mecD was demonstrated by gene expression in S. aureus and deletion of the mecD-containing island in M. caseolyticus. The mecD gene was located either on an 18,134-bp M. caseolyticus resistance island (McRImecD-1) or a 16,188-bp McRImecD-2. Both islands were integrated at the 3′ end of the rpsI gene, carried the mecD operon (mecD-mecR1m-mecIm), and genes for an integrase of the tyrosine recombinase family and a putative virulence-associated protein (virE). Apart from the mecD operon, that shared 66% overall nucleotide identity with the mecB operon, McRImecD islands were unrelated to any mecB-carrying elements or staphylococcal cassette chromosome mec. Only McRImecD-1 that is delimitated at both ends by direct repeats was capable of circular excision. The recombined excision pattern suggests site-specific activity of the integrase and allowed identification of a putative core attachment site. Detection of rpsI-associated integrases in Bacillus and S. aureus reveals a potential for broad-host range dissemination of the novel methicillin resistance gene mecD.
Collapse
Affiliation(s)
- Sybille Schwendener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kerstin Cotting
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Chen W, Zhang Y, Yeo WS, Bae T, Ji Q. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System. J Am Chem Soc 2017; 139:3790-3795. [PMID: 28218837 DOI: 10.1021/jacs.6b13317] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus, a major human pathogen, has been the cause of serious infectious diseases with a high mortality rate. Although genetics is a key means to study S. aureus physiology, such as drug resistance and pathogenesis, genetic manipulation in S. aureus is always time-consuming and labor-intensive. Here we report a CRISPR/Cas9 system (pCasSA) for rapid and efficient genome editing, including gene deletion, insertion, and single-base substitution mutation in S. aureus. The designed pCasSA system is amenable to the assembly of spacers and repair arms by Golden Gate assembly and Gibson assembly, respectively, enabling rapid construction of the plasmids for editing. We further engineered the pCasSA system to be an efficient transcription inhibition system for gene knockdown and possible genome-wide screening. The development of the CRISPR/Cas9-mediated genome editing and transcription inhibition tools will dramatically accelerate drug-target exploration and drug development.
Collapse
Affiliation(s)
- Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University, School of Medicine-Northwest , Gary, Indiana 46408, United States
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University, School of Medicine-Northwest , Gary, Indiana 46408, United States
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| |
Collapse
|
23
|
A Novel erm(44) Gene Variant from a Human Staphylococcus saprophyticus Isolate Confers Resistance to Macrolides and Lincosamides but Not Streptogramins. Antimicrob Agents Chemother 2016; 61:AAC.01655-16. [PMID: 27799208 DOI: 10.1128/aac.01655-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/23/2016] [Indexed: 01/30/2023] Open
Abstract
A novel erm(44) gene variant, erm(44)v, has been identified by whole-genome sequencing in a Staphylococcus saprophyticus isolate from the skin of a healthy person. It has the particularity to confer resistance to macrolides and lincosamides but not to streptogramin B when expressed in S. aureus The erm(44)v gene resides on a 19,400-bp genomic island which contains phage-associated proteins and is integrated into the chromosome of S. saprophyticus.
Collapse
|
24
|
Discovery of Novel MLSB Resistance Methylase Genes and Their Associated Genetic Elements in Staphylococci. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
The new macrolide-lincosamide-streptogramin B resistance gene erm(45) is located within a genomic island in Staphylococcus fleurettii. Antimicrob Agents Chemother 2015; 59:3578-81. [PMID: 25779586 DOI: 10.1128/aac.00369-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 01/02/2023] Open
Abstract
Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus.
Collapse
|