1
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
3
|
Naamala J, Subramanian S, Msimbira LA, Smith DL. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H. Front Microbiol 2023; 14:1206152. [PMID: 37700863 PMCID: PMC10493332 DOI: 10.3389/fmicb.2023.1206152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Nitrogen Fixation Activity and Genome Analysis of a Moderately Haloalkaliphilic Anoxygenic Phototrophic Bacterium Rhodovulum tesquicola. Microorganisms 2022; 10:microorganisms10081615. [PMID: 36014033 PMCID: PMC9412634 DOI: 10.3390/microorganisms10081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The genome of the moderately haloalkaliphilic diazotrophic anoxygenic phototrophic bacterium Rhodovulum tesquicola A-36sT isolated from an alkaline lake was analyzed and compared to the genomes of the closest species Rhodovulum steppense A-20sT and Rhodovulum strictum DSM 11289T. The genomic features of three organisms are quite similar, reflecting their ecological and physiological role of facultative photoheterotrophs. Nevertheless, the nitrogenase activity of the pure cultures of the studied bacteria differed significantly: the highest rate (4066 nmoles C2H2/mg of dry weight per hour) was demonstrated by Rhodovulum strictum while the rates in Rhodovulum tesquicola and Rhodovulum steppense were an order of magnitude lower (278 and 523 nmoles C2H2/mg of dry weight per hour, respectively). This difference can be attributed to the presence of an additional nitrogenase operon found exclusively in R. strictum and to the structural variation in nitrogenase operon in R. tesquicola.
Collapse
|
5
|
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618092] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the last two decades the world has experienced an abrupt change in climate. Both natural and artificial factors are climate change drivers, although the effect of natural factors are lesser than the anthropogenic drivers. These factors have changed the pattern of precipitation resulting in a rise in sea levels, changes in evapotranspiration, occurrence of flood overwintering of pathogens, increased resistance of pests and parasites, and reduced productivity of plants. Although excess CO2 promotes growth of C3 plants, high temperatures reduce the yield of important agricultural crops due to high evapotranspiration. These two factors have an impact on soil salinization and agriculture production, leading to the issue of water and food security. Farmers have adopted different strategies to cope with agriculture production in saline and saline sodic soil. Recently the inoculation of halotolerant plant growth promoting rhizobacteria (PGPR) in saline fields is an environmentally friendly and sustainable approach to overcome salinity and promote crop growth and yield in saline and saline sodic soil. These halotolerant bacteria synthesize certain metabolites which help crops in adopting a saline condition and promote their growth without any negative effects. There is a complex interkingdom signaling between host and microbes for mutual interaction, which is also influenced by environmental factors. For mutual survival, nature induces a strong positive relationship between host and microbes in the rhizosphere. Commercialization of such PGPR in the form of biofertilizers, biostimulants, and biopower are needed to build climate resilience in agriculture. The production of phytohormones, particularly auxins, have been demonstrated by PGPR, even the pathogenic bacteria and fungi which also modulate the endogenous level of auxins in plants, subsequently enhancing plant resistance to various stresses. The present review focuses on plant-microbe communication and elaborates on their role in plant tolerance under changing climatic conditions.
Collapse
|
6
|
Feng S, Wang R, Pastor RW, Klauda JB, Im W. Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein-Lipid Modulations in Archaeal Membranes. J Phys Chem B 2021; 125:4714-4725. [PMID: 33913729 PMCID: PMC8379905 DOI: 10.1021/acs.jpcb.1c01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Halobacteria, a type of archaea in high salt environments, have phytanyl ether phospholipid membranes containing up to 50% menaquinone. It is not understood why a high concentration of menaquinone is required and how it influences membrane properties. In this study, menaquinone-8 headgroup and torsion parameters of isoprenoid tail are optimized in the CHARMM36 force field. Molecular dynamics simulations of archaeal bilayers containing 0 to 50% menaquinone characterize the distribution of menaquinone-8 and menaquinol-8, as well as their effects on mechanical properties and permeability. Menaquinone-8 segregates to the membrane midplane above concentrations of 10%, favoring an extended conformation in a fluid state. Menaquinone-8 increases the bilayer thickness but does not significantly alter the area compressibility modulus and lipid chain ordering. Counterintuitively, menaquinone-8 increases water permeability because it lowers the free energy barrier in the midplane. The thickness increase due to menaquinone-8 may help halobacteria ameliorate hyper-osmotic pressure by increasing the membrane bending constant. Simulations of the archaeal membranes with archaerhodopsin-3 show that the local membrane surface adjusts to accommodate the thick membranes. Overall, this study delineates the biophysical landscape of 50% menaquinone in the archaeal bilayer, demonstrates the mixing of menaquinone and menaquinol, and provides atomistic details about menaquinone configurations.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ruixing Wang
- Department of Chemistry and Biochemistry, Chemistry Program, University of Maryland, College Park, Maryland 20742, USA
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, Biophysics Program, University of Maryland, College Park, Maryland 20742, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
7
|
Villanova V, Galasso C, Fiorini F, Lima S, Brönstrup M, Sansone C, Brunet C, Brucato A, Scargiali F. Biological and chemical characterization of new isolated halophilic microorganisms from saltern ponds of Trapani, Sicily. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Grattieri M, Beaver K, Gaffney EM, Dong F, Minteer SD. Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. Chem Commun (Camb) 2020; 56:8553-8568. [PMID: 32578607 DOI: 10.1039/d0cc02672g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-bioelectrocatalysis combines the natural and highly sophisticated process of photosynthesis in biological entities with an abiotic electrode surface, to perform semi-artificial photosynthesis. However, challenges must be overcome, from the establishment and understanding of the photoexcited electron harvesting process at the electrode to the electrochemical characterization of these biotic/abiotic systems, and their subsequent tuning for enhancing energy generation (chemical and/or electrical). This Feature Article discusses the various approaches utilized to tackle these challenges, particularly focusing on powerful multi-disciplinary approaches for understanding and improving photo-bioelectrocatalysis. Among them is the combination of experimental evidence and quantum mechanical calculations, the use of bioinformatics to understand photo-bioelectrocatalysis at a metabolic level, or bioengineering to improve and facilitate photo-bioelectrocatalysis. Key aspects for the future development of photo-bioelectrocatalysis are presented alongside future research needs and promising applications of semi-artificial photosynthesis.
Collapse
Affiliation(s)
- Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
9
|
Gaffney EM, Grattieri M, Beaver K, Pham J, McCartney C, Minteer SD. Unveiling salinity effects on photo-bioelectrocatalysis through combination of bioinformatics and electrochemistry. Electrochim Acta 2020; 337. [PMID: 32308212 DOI: 10.1016/j.electacta.2020.135731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Little is known about the adaptation strategies utilized by photosynthetic microorganisms to cope with salinity changes happening in the environment, and the effects on microbial electrochemical technologies. Herein, bioinformatics analysis revealed a metabolism shift in Rhodobacter capsulatus resulting from salt stress, with changes in gene expression allowing accumulation of compatible solutes to balance osmotic pressure, together with the up-regulation of the nitrogen fixation cycle, an electron sink of the photosynthetic electron transfer chain. Using the transcriptome evidence of hindered electron transfer in the photosynthetic electron transport chain induced by adaption to salinity, increased understanding of photo-bioelectrocatalysis under salt stress is achieved. Accumulation of glycine-betaine allows immediate tuning of salinity tolerance but does not provide cell stabilization, with a 40 ± 20% loss of photo-bioelectrocatalysis in a 60 min time scale. Conversely, exposure to or inducing the expression of the Rhodobacter capsulatus gene transfer agent tunes salinity tolerance and increases cell stability. This work provides a proof of concept for the combination of bioinformatics and electrochemical tools to investigate microbial electrochemical systems, opening exciting future research opportunities.
Collapse
Affiliation(s)
- Erin M Gaffney
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Jennie Pham
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Caitlin McCartney
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA.,Departments of Chemistry, Brown University, 324 Brook Street Box H, Providence, 02912, Rhode Island, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| |
Collapse
|
10
|
Song WS, Kim SM, Jo SH, Lee JS, Jeon HJ, Ko BJ, Choi KY, Yang YH, Kim YG. Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium Pseudoalteromonas phenolica in response to salt stress. RSC Adv 2020; 10:23792-23800. [PMID: 35517354 PMCID: PMC9054934 DOI: 10.1039/d0ra04034g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023] Open
Abstract
The halophilic bacterium Pseudoalteromonas phenolica is well known as a promising candidate that enables the recycling of organic wastes at high salinity. However, for industrial applications of P. phenolica further research is required to explore the biological mechanism for maximizing the activities and productivities of this bacterium. In this study, we investigated the osmotic stress resistance and specific protease activities of P. phenolica in a normal-salt medium (0.3 M NaCl) and high-salt medium (1 M NaCl) based on intra- and extracellular multi-omics approaches. Proteins related to betaine and proline biosynthesis were increased under high salt stress. The targeted metabolite analysis found that proline was overproduced and accumulated outside the cell at high salinity, and betaine was accumulated in the cell by activation of biosynthesis as well as uptake. In addition, extracellular serine proteases were shown to be upregulated in response to salt stress by the extracellular proteomic analysis. The specific proteolytic activity assay indicated that the activities of serine proteases, useful enzymes for the recycling of organic wastes, were increased remarkably under high salt stress. Our results suggest that betaine and proline are key osmoprotectant metabolites of P. phenolica, and they can be used for the improvement of protease production and P. phenolica activities for the recycling of high-salt organic wastes in the future. Multi-omics study showed the osmoprotective mechanism and changes of proteolytic activities of Pseudoalteromonas phenolica in response to salt stress.![]()
Collapse
Affiliation(s)
- Won-Suk Song
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Seong-Min Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Byoung Joon Ko
- New Drug Development Center
- Osong Medical Innovation Foundation
- Cheongju 28160
- Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering
- College of Engineering
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| |
Collapse
|
11
|
Shahzad R, Khan AL, Waqas M, Ullah I, Bilal S, Kim YH, Asaf S, Kang SM, Lee IJ. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics 2019; 15:16. [PMID: 30830445 DOI: 10.1007/s11306-018-1467-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Methanol utilization by bacteria is important for various industrial processes. Methylotrophic bacteria are taxonomically diverse and some species promote plant growth and induce stress tolerance. However, methylotrophic potential of bacterial endophytes is poorly understood. OBJECTIVE The current study aimed to evaluate the metabolomic and proteomic changes in endophytic Bacillus amyloliquefaciens RWL-1 caused by its methanol utilization and the resultant influence on its phytohormone production. METHODS B. amyloliquefaciens RWL-1 was grown in LB medium with different concentrations [0 (control), 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4%) of methanol to examine its methylotrophic potential. SDS-PAGE analysis was carried out for bacterial protein confirmation. Moreover, the phytohormones (indole 3 acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA)) produced by RWL-1 in methanol supplemented medium were quantified by GC-MS/SIM (6890N Network GC system, and 5973 Network Mass Selective Detector; Agilent Technologies, Santa Clara, CA, USA), while the antioxidants were estimated spectrophotometrically (T60 UV-VIS spectrophotometer, Leicester, UK). The amino acid quantification was carried out by amino acid analyzer (HITACHI L-8900, Japan). Furthermore, Nano-liquid chromatography (LC)-MS/MS analysis was performed with an Agilent system (Wilmington, DE, USA) for proteomic analysis while mascot algorithm (Matrix science, USA) was used to identify peptide sequences present in the protein sequence database. RESULTS RWL-1 showed significant growth in media supplemented with 2 and 3.5% methanol, when compared with other concentrations. Mass spectroscopy analysis revealed that RWL-1 utilizes methanol efficiently as a carbon source. In the presence of methanol, RWL-1 produced significantly higher levels of IAA but lower levels of ABA, when compared with the control. Further, enzymatic antioxidants and functional amino acids were significantly up-regulated, with predominant expression of glutamic acid and alanine. Nano-liquid chromatography, quadrupole time-of-flight analysis, and quantitative analysis of methanol-treated bacterial cells showed expression of eight different types of proteins, including detoxification proteins, unrecognized and unclassified enzymes with antioxidant properties, proteases, metabolism enzymes, ribosomal proteins, antioxidant proteins, chaperones, and heat shock proteins. CONCLUSION Results demonstrate that RWL-1 can significantly enhance its growth by utilizing methanol, and could produce phytohormones when growing in methanol-supplemented media, with increased expression of specific proteins and different biochemicals. These results will be useful in devising strategies for utilizing methylotrophic bacterial endophytes as alternative promoters of plant growth. Understanding RWL-1 ability to utilize methanol. The survival and phytohormones production by Bacillus amyloliquefaciens RWL-1 in methanol supplemented media whistle inducing metabolic and proteomic changes.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- Department of Agriculture Extension, Buner, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Sang-Mo Kang
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
White RA, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol 2019; 9:3189. [PMID: 30671032 PMCID: PMC6331483 DOI: 10.3389/fmicb.2018.03189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4–50°C) and pH (5–11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Grattieri M, Beaver K, Gaffney E, Minteer SD. Tuning purple bacteria salt-tolerance for photobioelectrochemical systems in saline environments. Faraday Discuss 2019; 215:15-25. [DOI: 10.1039/c8fd00160j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fast adaptation ofRhodobacter capsulatusto increasing salinities opens possibilities for photo-bioelectrochemical systems development for saline environments.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering
- University of Utah
- Salt Lake City
- USA
| | - Kevin Beaver
- Departments of Biology and Chemistry
- Lebanon Valley College
- Annville
- USA
| | - Erin M. Gaffney
- Departments of Chemistry and Materials Science & Engineering
- University of Utah
- Salt Lake City
- USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering
- University of Utah
- Salt Lake City
- USA
| |
Collapse
|
14
|
Tang W, Luo C. Overexpression of Zinc Finger Transcription Factor ZAT6 Enhances Salt Tolerance. Open Life Sci 2018; 13:431-445. [PMID: 33817112 PMCID: PMC7874681 DOI: 10.1515/biol-2018-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present investigation is to examine the function of the C2H2-type zinc finger transcription factor of Arabidopsis thaliana 6 (ZAT6) in salt stress tolerance in cells of rice (Oryza sativa L.), cotton (Gossypium hirsutum L.) and slash pine (Pinus elliottii Engelm.). Cells of O. sativa, G. hirsutum, and P. elliottii overexpressing ZAT6 were generated using Agrobacterium-mediated genetic transformation. Molecular and functional analysis of transgenic cell lines demonstrate that overexpression of ZAT6 increased tolerance to salt stress by decreasing lipid peroxidation and increasing the content of abscisic acid (ABA) and GA8, as well as enhancing the activities of antioxidant enzymes such as ascorbate peroxidise (APOX), catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD). In rice cells, ZAT6 also increased expression of Ca2+-dependent protein kinase genes OsCPK9 and OsCPK25 by 5–7 fold under NaCl stress. Altogether, our results suggest that overexpression of ZAT6 enhanced salt stress tolerance by increasing antioxidant enzyme activity, hormone content and expression of Ca2+-dependent protein kinase in transgenic cell lines of different plant species.
Collapse
Affiliation(s)
- Wei Tang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Caroline Luo
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
16
|
Gobbetti M, Di Cagno R, Calasso M, Neviani E, Fox PF, De Angelis M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Pérez V, Dorador C, Molina V, Yáñez C, Hengst M. Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie van Leeuwenhoek 2018; 111:1449-1465. [PMID: 29569108 DOI: 10.1007/s10482-018-1067-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (> 1200 W m-2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de Biotecnología, Universidad de Antofagasta, Antofagasta, Chile
| | - Verónica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaiso, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile. .,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.
| |
Collapse
|
18
|
Schwendner P, Bohmeier M, Rettberg P, Beblo-Vranesevic K, Gaboyer F, Moissl-Eichinger C, Perras AK, Vannier P, Marteinsson VT, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Westall F, Riedo A, Monaghan EP, Ehrenfreund P, Cabezas P, Walter N, Cockell C. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO 4 at Identical Water Activity. Front Microbiol 2018; 9:335. [PMID: 29535699 PMCID: PMC5835128 DOI: 10.3389/fmicb.2018.00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.
Collapse
Affiliation(s)
- Petra Schwendner
- School of Physics and Astronomy, UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Bohmeier
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Kristina Beblo-Vranesevic
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Frédéric Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, Orléans, France
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Alexandra K. Perras
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea, University of Regensburg, Regensburg, Germany
| | | | - Viggó T. Marteinsson
- MATIS - Prokaria, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | | | - Felipe Gómez
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología, Madrid, Spain
| | - Moustafa Malki
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, Orléans, France
| | - Andreas Riedo
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | | | - Pascale Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
- Space Policy Institute, George Washington University, Washington, DC, United States
| | - Patricia Cabezas
- Space Policy Institute, George Washington University, Washington, DC, United States
- European Science Foundation, Strasbourg, France
| | - Nicolas Walter
- Space Policy Institute, George Washington University, Washington, DC, United States
- European Science Foundation, Strasbourg, France
| | - Charles Cockell
- School of Physics and Astronomy, UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Hickey C, Fallico V, Wilkinson M, Sheehan J. Redefining the effect of salt on thermophilic starter cell viability, culturability and metabolic activity in cheese. Food Microbiol 2018; 69:219-231. [DOI: 10.1016/j.fm.2017.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022]
|
20
|
Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles. Appl Environ Microbiol 2017; 83:AEM.00866-17. [PMID: 28802275 DOI: 10.1128/aem.00866-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH4 to CO2 remained unaffected, while gene expression involved in energy-yielding reactions (nuoA-N) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities.IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.
Collapse
|
21
|
Oshone R, Ngom M, Chu F, Mansour S, Sy MO, Champion A, Tisa LS. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics 2017; 18:633. [PMID: 28821232 PMCID: PMC5563000 DOI: 10.1186/s12864-017-4056-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Results Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Conclusion Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4056-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rediet Oshone
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.,Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-Air, Dakar, Sénégal
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Samira Mansour
- Faculty of Science, Suez Canal University, Ismalia, Egypt
| | - Mame Ourèye Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,UMR DIADE, Institut de Recherche pour le Développement, Montpellier, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA.
| |
Collapse
|
22
|
Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile. Front Microbiol 2017; 8:1173. [PMID: 28694800 PMCID: PMC5483449 DOI: 10.3389/fmicb.2017.01173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile.,Programa de Doctorado en Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad de AntofagastaAntofagasta, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Lenka Kurte
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology and BioengineeringSantiago, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta and Department of Biotechnology, Universidad de AntofagastaAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, PensacolaFL, United States
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute of Biosciences, University of MonsMons, Belgium
| | - Veronica Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad de Playa AnchaValparaíso, Chile
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of StirlingStirling, United Kingdom
| |
Collapse
|
23
|
Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida. Appl Environ Microbiol 2017; 83:AEM.03236-16. [PMID: 28130298 DOI: 10.1128/aem.03236-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings.IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization.
Collapse
|
24
|
Yaakop AS, Chan KG, Ee R, Lim YL, Lee SK, Manan FA, Goh KM. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses. Sci Rep 2016; 6:33660. [PMID: 27641516 PMCID: PMC5027565 DOI: 10.1038/srep33660] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/31/2016] [Indexed: 11/21/2022] Open
Abstract
Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis.
Collapse
Affiliation(s)
- Amira Suriaty Yaakop
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81300 Skudai, Johor, Malaysia
| | - Kok-Gan Chan
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Robson Ee
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Yan Lue Lim
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Siew-Kim Lee
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Fazilah Abd Manan
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81300 Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81300 Skudai, Johor, Malaysia
| |
Collapse
|
25
|
Krol E, Klaner C, Gnau P, Kaever V, Essen LO, Becker A. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2016; 162:1840-1856. [PMID: 27535558 DOI: 10.1099/mic.0.000356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Christina Klaner
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Petra Gnau
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Lars-Oliver Essen
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
26
|
Adessi A, Concato M, Sanchini A, Rossi F, De Philippis R. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl Microbiol Biotechnol 2016; 100:2917-26. [DOI: 10.1007/s00253-016-7291-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
27
|
Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics. PLoS One 2015; 10:e0135065. [PMID: 26287734 PMCID: PMC4545795 DOI: 10.1371/journal.pone.0135065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt stress. Changes of extracellular protein profiles from Tistlia consotensis in conditions of low and high salinities were monitored by proteogenomics using a bacterial draft genome. At low salinity, we detected greater amounts of the HpnM protein which is involved in the biosynthesis of hopanoids. This may represent a novel, and previously unreported, strategy by halotolerant microorganisms to prevent the entry of water into the cell under conditions of low salinity. At high salinity, proteins associated with osmosensing, exclusion of Na+ and transport of compatible solutes, such as glycine betaine or proline are abundant. We also found that, probably in response to the high salt concentration, T. consotensis activated the synthesis of flagella and triggered a chemotactic response neither of which were observed at the salt concentration which is optimal for growth. Our study demonstrates that the exoproteome is an appropriate indicator of adaptive response of T. consotensis to changes in salinity because it allowed the identification of key proteins within its osmoadaptive mechanism that had not previously been detected in its cell proteome.
Collapse
|
28
|
Lee B, Tachon S, Eigenheer RA, Phinney BS, Marco ML. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract. J Proteome Res 2015; 14:3136-47. [DOI: 10.1021/acs.jproteome.5b00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bokyung Lee
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Sybille Tachon
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Richard A. Eigenheer
- Proteomics
Core Facility, Genome Center, University of California, 451 East
Health Sciences Drive, Davis, California 95616, United States
| | - Brett S. Phinney
- Proteomics
Core Facility, Genome Center, University of California, 451 East
Health Sciences Drive, Davis, California 95616, United States
| | - Maria L. Marco
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
29
|
Kohler C, Lourenço RF, Bernhardt J, Albrecht D, Schüler J, Hecker M, Gomes SL. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. BMC Microbiol 2015; 15:71. [PMID: 25879753 PMCID: PMC4391529 DOI: 10.1186/s12866-015-0404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/11/2015] [Indexed: 11/15/2022] Open
Abstract
Background With the aim of remaining viable, bacteria must deal with changes in environmental conditions, including increases in external osmolarity. While studies concerning bacterial response to this stress condition have focused on soil, marine and enteric species, this report is about Caulobacter crescentus, a species inhabiting freshwater oligotrophic habitats. Results A genomic analysis reported in this study shows that most of the classical genes known to be involved in intracellular solute accumulation under osmotic adaptation are missing in C. crescentus. Consistent with this observation, growth assays revealed a restricted capability of the bacterium to propagate under hyperosmotic stress, and addition of the compatible solute glycine betaine did not improve bacterial resistance. A combination of transcriptomic and proteomic analyses indicated quite similar changes triggered by the presence of either salt or sucrose, including down-regulation of many housekeeping processes and up-regulation of functions related to environmental adaptation. Furthermore, a GC-MS analysis revealed some metabolites at slightly increased levels in stressed cells, but none of them corresponding to well-established compatible solutes. Conclusion Despite a clear response to hyperosmotic stress, it seems that the restricted capability of C. crescentus to tolerate this unfavorable condition is probably a consequence of the inability to accumulate intracellular solutes. This finding is consistent with the ecology of the bacterium, which inhabits aquatic environments with low nutrient concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0404-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Kohler
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany.
| | - Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Jörg Bernhardt
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Dirk Albrecht
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Julia Schüler
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Michael Hecker
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Draft Genome Sequence of the Extremely Halophilic Bacterium Halomonas salina Strain CIFRI1, Isolated from the East Coast of India. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01321-14. [PMID: 25573926 PMCID: PMC4290979 DOI: 10.1128/genomea.01321-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Halomonas salina strain CIFRI1 is an extremely salt-stress-tolerant bacterium isolated from the salt crystals of the east coast of India. Here we report the annotated 3.45-Mb draft genome sequence of strain CIFRI1 having 86 contigs with 3,139 protein coding loci, including 62 RNA genes.
Collapse
|
31
|
Yin L, Xue Y, Ma Y. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation. PLoS One 2015; 10:e0128649. [PMID: 26030352 PMCID: PMC4452262 DOI: 10.1371/journal.pone.0128649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022] Open
Abstract
The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress.
Collapse
Affiliation(s)
- Liang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YM)
| |
Collapse
|
32
|
Tian Y, Tian Y, Luo X, Zhou T, Huang Z, Liu Y, Qiu Y, Hou B, Sun D, Deng H, Qian S, Yao K. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC PLANT BIOLOGY 2014; 14:226. [PMID: 25181943 PMCID: PMC4167151 DOI: 10.1186/s12870-014-0226-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. RESULTS Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. CONCLUSION A comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.
Collapse
Affiliation(s)
- Yunhong Tian
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Yunming Tian
- />State Key Laboratory of Oncology of Southern China, Guangzhou, Guangdong Province People’s Republic of China
- />Department of Radiation Oncology, Cancer Center of Sun Yat-Sen University, Guangzhou, Guangdong Province People’s Republic of China
| | - Xiaojun Luo
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| | - Tao Zhou
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Zuoping Huang
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Ying Liu
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Yihan Qiu
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Bing Hou
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Dan Sun
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Hongyu Deng
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| | - Shen Qian
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Kaitai Yao
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| |
Collapse
|
33
|
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 2014; 15:730. [PMID: 25164283 PMCID: PMC4158056 DOI: 10.1186/1471-2164-15-730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-730) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St, John's, NL A1B 3X5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kanno N, Matsuura K, Haruta S. Differences in survivability under starvation conditions among four species of purple nonsulfur phototrophic bacteria. Microbes Environ 2014; 29:326-8. [PMID: 24941957 PMCID: PMC4159045 DOI: 10.1264/jsme2.me14013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Survivability under carbon-starvation conditions was investigated in four species of purple phototrophic bacteria: Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodospirillum rubrum, and Rubrivivax gelatinosus. All these test organisms survived longer in the light than in the dark. ATP levels in the cultures were maintained in the light, which indicated that survivability was supported by photosynthesis. Survivability and tolerance against hypertonic stress in the dark was higher in Rhodopseudomonas palustris, which is widely distributed in natural environments including soils, than in the three other species.
Collapse
Affiliation(s)
- Nanako Kanno
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| | | | | |
Collapse
|
35
|
Calvano CD, Italiano F, Catucci L, Agostiano A, Cataldi TRI, Palmisano F, Trotta M. The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. Biometals 2013; 27:65-73. [PMID: 24249151 DOI: 10.1007/s10534-013-9687-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/10/2013] [Indexed: 02/07/2023]
Abstract
A detailed characterization of membrane lipids of the photosynthetic bacterium Rhodobacter (R.) sphaeroides was accomplished by thin-layer chromatography coupled with matrix-assisted laser desorption ionization mass spectrometry. Such an approach allowed the identification of the main membrane lipids belonging to different classes, namely cardiolipins (CLs), phosphatidylethanolamines, phosphatidylglycerols (PGs), phosphatidylcholines, and sulfoquinovosyldiacylglycerols (SQDGs). Thus, the lipidomic profile of R. sphaeroides R26 grown in abiotic stressed conditions by exposure to bivalent cobalt cation and chromate oxyanion, was investigated. Compared to bacteria grown under control conditions, significant lipid alterations take place under both stress conditions; cobalt exposure stress results in the relative content increase of CLs and SQDGs, most likely compensating the decrease in PGs content, whereas chromate stress conditions result in the relative content decrease of both PGs and SQDGs, leaving CLs unaltered. For the first time, the response of R. sphaeroides to heavy metals as Co(2+) and CrO4 (2-) is reported and changes in membrane lipid profiles were rationalised.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|