1
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
2
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
3
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
4
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
5
|
Quantifying population-specific growth in benthic bacterial communities under low oxygen using H 218O. ISME JOURNAL 2019; 13:1546-1559. [PMID: 30783213 PMCID: PMC6776007 DOI: 10.1038/s41396-019-0373-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 01/09/2023]
Abstract
The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of "microbial dark matter", validating hypotheses put forth by earlier metagenomic studies.
Collapse
|
6
|
Papp K, Hungate BA, Schwartz E. Microbial rRNA Synthesis and Growth Compared through Quantitative Stable Isotope Probing with H 218O. Appl Environ Microbiol 2018; 84:e02441-17. [PMID: 29439990 PMCID: PMC5881069 DOI: 10.1128/aem.02441-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 02/01/2023] Open
Abstract
Growing bacteria have a high concentration of ribosomes to ensure sufficient protein synthesis, which is necessary for genome replication and cellular division. To elucidate whether metabolic activity of soil microorganisms is coupled with growth, we investigated the relationship between rRNA and DNA synthesis in a soil bacterial community using quantitative stable isotope probing (qSIP) with H218O. Most soil bacterial taxa were metabolically active and grew, and there was no significant difference between the isotopic composition of DNA and RNA extracted from soil incubated with H218O. The positive correlation between 18O content of DNA and rRNA of taxa, with a slope statistically indistinguishable from 1 (slope = 0.96; 95% confidence interval [CI], 0.90 to 1.02), indicated that few taxa made new rRNA without synthesizing new DNA. There was no correlation between rRNA-to-DNA ratios obtained from sequencing libraries and the atom percent excess (APE) 18O values of DNA or rRNA, suggesting that the ratio of rRNA to DNA is a poor indicator of microbial growth or rRNA synthesis. Our results support the notion that metabolic activity is strongly coupled to cellular division and suggest that nondividing taxa do not dominate soil metabolic activity.IMPORTANCE Using quantitative stable isotope probing of microbial RNA and DNA with H218O, we show that most soil taxa are metabolically active and grow because their nucleic acids are significantly labeled with 18O. A majority of the populations that make new rRNA also grow, which argues against the common paradigm that most soil taxa are dormant. Additionally, our results indicate that relative sequence abundance-based RNA-to-DNA ratios, which are frequently used for identifying active microbial populations in the environment, underestimate the number of metabolically active taxa within soil microbial communities.
Collapse
Affiliation(s)
- Katerina Papp
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
7
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
8
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
9
|
Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 2017; 101:2203-2216. [PMID: 28175949 DOI: 10.1007/s00253-017-8149-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
This review shall provide support for the suitability of arid environments as preferred location to search for unknown lipid-accumulative bacteria. Bacterial lipids are attracting more and more attention as sustainable replacement for mineral oil in fuel and plastic production. The development of prokaryotic microorganisms in arid desert habitats is affected by its harsh living conditions. Drought, nutrient limitation, strong radiation, and extreme temperatures necessitate effective adaption mechanisms. Accumulation of storage lipids as energy reserve and source of metabolic water represents a common adaption in desert animals and presumably in desert bacteria and archaea as well. Comparison of corresponding literature resulted in several bacterial species from desert habitats, which had already been described as lipid-accumulative elsewhere. Based on the gathered information, literature on microbial communities in hot desert, cold desert, and humid soil were analyzed on its content of lipid-accumulative bacteria. With more than 50% of the total community size in single studies, hot deserts appear to be more favorable for lipid-accumulative species then humid soil (≤20%) and cold deserts (≤17%). Low bacterial lipid accumulation in cold deserts is assumed to result from the influence of low temperatures on fatty acids and the increased necessity of permanent adaption methods.
Collapse
Affiliation(s)
- Philippa Hauschild
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany
| | - Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany
| | - Mohamed H Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed M Al-Ansari
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Naief H Almakishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany. .,Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
10
|
Hayer M, Schwartz E, Marks JC, Koch BJ, Morrissey EM, Schuettenberg AA, Hungate BA. Identification of growing bacteria during litter decomposition in freshwater through H218O quantitative stable isotope probing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:975-982. [PMID: 27657357 DOI: 10.1111/1758-2229.12475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Identification of microorganisms that facilitate the cycling of nutrients in freshwater is paramount to understanding how these ecosystems function. Here, we identify growing aquatic bacteria using H218O quantitative stable isotope probing. During 8 day incubations in 97 atom % H218O, 54% of the taxa grew. The most abundant phyla among growing taxa were Proteobacteria (45%), Bacteroidetes (30%) and Firmicutes (10%). Taxa differed in isotopic enrichment, reflecting variation in DNA replication of bacterial populations. At the class level, the highest atom fraction excess was observed for OPB41 and δ-Proteobacteria. There was no linear relationship between 18 O incorporation and abundance of taxa. δ-Proteobacteria and OPB41 were not abundant, yet the DNA of both taxa was highly enriched in 18 O. Bacteriodetes, in contrast, were abundant but not highly enriched. Our study shows that a large proportion of the bacterial taxa found on decomposing leaf litter grew slowly, and several low abundance taxa were highly enriched. These findings indicating that rare organisms may be important for the decomposition of leaf litter in streams, and that quantitative stable isotope probing with H218O can be used to advance our understanding of microorganisms in freshwater by identifying species that are growing in complex communities.
Collapse
Affiliation(s)
- Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Jane C Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil, West Virginia University, Morgantown, WV, 26506, USA
| | - Alexa A Schuettenberg
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| |
Collapse
|
11
|
Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, Morrissey EM, Soldanova K. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol 2016; 41:14-18. [DOI: 10.1016/j.copbio.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
12
|
Kästner M, Nowak KM, Miltner A, Schäffer A. (Multiple) Isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable ‘bound’ residues. Curr Opin Biotechnol 2016; 41:73-82. [DOI: 10.1016/j.copbio.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
13
|
Vogt C, Lueders T, Richnow HH, Krüger M, von Bergen M, Seifert J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. J Mol Microbiol Biotechnol 2016; 26:195-210. [DOI: 10.1159/000440806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using <sup>13</sup>C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.
Collapse
|
14
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front Microbiol 2015; 6:24. [PMID: 25688238 PMCID: PMC4311709 DOI: 10.3389/fmicb.2015.00024] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H(18) 2O) stable isotope probing (SIP) to identify fast-growing bacteria that were associated with pulses of trace gasses (CO2, CH4, and N2O) from different ecosystems [agricultural site, grassland, deciduous forest, and coniferous forest (CF)] following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69-74%) of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5-20-fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning.
Collapse
Affiliation(s)
- Zachary T Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University Provo, UT, USA
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame South Bend, IN, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology and CIRES, University of Colorado Boulder, CO, USA ; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| | - Jay T Lennon
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
16
|
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 2012; 31:154-65. [PMID: 23022353 DOI: 10.1016/j.biotechadv.2012.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/24/2022]
Abstract
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.
Collapse
Affiliation(s)
- Ondrej Uhlik
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lolas IB, Chen X, Bester K, Nielsen JL. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography. MICROBIOLOGY-SGM 2012; 158:2796-2804. [PMID: 22956759 DOI: 10.1099/mic.0.061077-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with (13)C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting the Methylobacillus group was designed and applied to the enrichment culture incubated with (14)C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from (14)C-labelled triclosan by the Methylobacillus. The high representation of Methylobacillus in the (13)C-labelled DNA clone library and its observed utilization of (14)C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants.
Collapse
Affiliation(s)
- Ihab Bishara Lolas
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | - Xijuan Chen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark.,Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Jeppe Lund Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| |
Collapse
|