1
|
Park T. - Invited Review - Ruminal ciliates as modulators of the rumen microbiome. Anim Biosci 2024; 37:385-395. [PMID: 38186255 PMCID: PMC10838670 DOI: 10.5713/ab.23.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
2
|
Li Z, Wang X, Zhang Y, Yu Z, Zhang T, Dai X, Pan X, Jing R, Yan Y, Liu Y, Gao S, Li F, Huang Y, Tian J, Yao J, Xing X, Shi T, Ning J, Yao B, Huang H, Jiang Y. Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. THE ISME JOURNAL 2022; 16:2775-2787. [PMID: 35986094 PMCID: PMC9666518 DOI: 10.1038/s41396-022-01306-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Understanding the biodiversity and genetics of gut microbiomes has important implications for host physiology and industrial enzymes, whereas most studies have been focused on bacteria and archaea, and to a lesser extent on fungi and viruses. One group, still underexplored and elusive, is ciliated protozoa, despite its importance in shaping microbiota populations. Integrating single-cell sequencing and an assembly-and-identification pipeline, we acquired 52 high-quality ciliate genomes of 22 rumen morphospecies from 11 abundant morphogenera. With these genomes, we resolved the taxonomic and phylogenetic framework that revised the 22 morphospecies into 19 species spanning 13 genera and reassigned the genus Dasytricha from Isotrichidae to a new family Dasytrichidae. Comparative genomic analyses revealed that extensive horizontal gene transfers and gene family expansion provided rumen ciliate species with a broad array of carbohydrate-active enzymes (CAZymes) to degrade all major kinds of plant and microbial carbohydrates. In particular, the genomes of Diplodiniinae and Ophryoscolecinae species encode as many CAZymes as gut fungi, and ~80% of their degradative CAZymes act on plant cell-wall. The activities of horizontally transferred cellulase and xylanase of ciliates were experimentally verified and were 2-9 folds higher than those of the inferred corresponding bacterial donors. Additionally, the new ciliate dataset greatly facilitated rumen metagenomic analyses by allowing ~12% of the metagenomic sequencing reads to be classified as ciliate sequences.
Collapse
Affiliation(s)
- Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangnan Wang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Zhang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Tingting Zhang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuelei Dai
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangyu Pan
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ruoxi Jing
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling, 712100, China
| | - Yueyang Yan
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangfan Liu
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shan Gao
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Fei Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Youqin Huang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jian Tian
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junhu Yao
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - XvPeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Tao Shi
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jifeng Ning
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Center for Functional Genomics, Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Sartaj K, Patel A, Matsakas L, Prasad R. Unravelling Metagenomics Approach for Microbial Biofuel Production. Genes (Basel) 2022; 13:1942. [PMID: 36360179 PMCID: PMC9689425 DOI: 10.3390/genes13111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Renewable biofuels, such as biodiesel, bioethanol, and biobutanol, serve as long-term solutions to fossil fuel depletion. A sustainable approach feedstock for their production is plant biomass, which is degraded to sugars with the aid of microbes-derived enzymes, followed by microbial conversion of those sugars to biofuels. Considering their global demand, additional efforts have been made for their large-scale production, which is ultimately leading breakthrough research in biomass energy. Metagenomics is a powerful tool allowing for functional gene analysis and new enzyme discovery. Thus, the present article summarizes the revolutionary advances of metagenomics in the biofuel industry and enlightens the importance of unexplored habitats for novel gene or enzyme mining. Moreover, it also accentuates metagenomics potentials to explore uncultivable microbiomes as well as enzymes associated with them.
Collapse
Affiliation(s)
- Km Sartaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152773. [PMID: 34979222 DOI: 10.1016/j.scitotenv.2021.152773] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is an abundant resource with untapped potential for biofuel, enzymes, and chemical production. Its complex recalcitrant structure obstructs its bioconversion into biofuels and other value-added products. For improving its bioconversion efficiency, it is important to deconstruct its complex structure. In natural systems like rumen, diverse microbial communities carry out hydrolysis, acidogenesis, acetogenesis, and methanogenesis of lignocellulosic biomass through physical penetration, synergistic and enzymatic actions enhancing lignocellulose degradation activity. This review article aims to discuss comprehensively the rumen microbial ecosystem, their interactions, enzyme production, and applications for efficient bioconversion of lignocellulosic waste to biofuels. Furthermore, meta 'omics' approaches to elucidate the structure and functions of rumen microorganisms, fermentation mechanisms, microbe-microbe interactions, and host-microbe interactions have been discussed thoroughly. Additionally, feed additives' role in improving ruminal fermentation efficiency and reducing environmental nitrogen losses has been discussed. Finally, the current status of rumen microbiota applications and future perspectives for the development of rumen mimic bioreactors for efficient bioconversion of lignocellulosic wastes to biofuels and chemicals have been highlighted.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashmi Rathour
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Manish Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Atya Kapley
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| |
Collapse
|
5
|
Glasgow EM, Kemna EI, Bingman CA, Ing N, Deng K, Bianchetti CM, Takasuka TE, Northen TR, Fox BG. A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. J Biol Chem 2021; 295:17752-17769. [PMID: 33454012 DOI: 10.1074/jbc.ra120.015328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/15/2020] [Indexed: 11/06/2022] Open
Abstract
Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)-linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.
Collapse
Affiliation(s)
- Evan M Glasgow
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | - Elias I Kemna
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | - Nicole Ing
- Joint BioEnergy Institute, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Christopher M Bianchetti
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | | | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, California, USA; Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Williams CL, Thomas BJ, McEwan NR, Rees Stevens P, Creevey CJ, Huws SA. Rumen Protozoa Play a Significant Role in Fungal Predation and Plant Carbohydrate Breakdown. Front Microbiol 2020; 11:720. [PMID: 32411103 PMCID: PMC7200989 DOI: 10.3389/fmicb.2020.00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
The rumen protozoa, alongside fungi, comprise the eukaryotic portion of the rumen microbiome. Rumen protozoa may account for up to 50% of biomass, yet their role in this ecosystem remains unclear. Early experiments inferred a role in carbohydrate and protein metabolism, but due to their close association with bacteria, definitively attributing these functions to the protozoa was challenging. The advent of ‘omic technologies has created opportunities to broaden our understanding of the rumen protozoa. This study aimed to utilize these methods to further our understanding of the role that protozoa play in the rumen in terms of their metabolic capacities, and in doing so, contribute valuable sequence data to reduce the chance of mis or under-representation of the rumen protozoa in meta’omic datasets. Rumen protozoa were isolated and purified using glucose-based sedimentation and differential centrifugation, extracted RNA was Poly(A) fraction enriched and DNase treated before use in a phage-based, cDNA metatranscriptomic library. Biochemical activity testing of the phage library showed 6 putatively positive plaques in response to carboxymethyl cellulose agar (indicative of cellulose activity), and no positive results for tributyrin (indicative of esterase/lipase activity) or egg yolk agar (indicative of proteolysis). Direct sequencing of the cDNA was also conducted using the Illumina HiSeq 2500. The metatranscriptome identified a wealth of carbohydrate-active enzymes which accounted for 8% of total reads. The most highly expressed carbohydrate-active enzymes were glycosyl hydrolases 5 and 11, polysaccharide lyases and deacetylases, xylanases and enzymes active against pectin, mannan and chitin; the latter likely used to digest rumen fungi which contain a chitin-rich cell membrane. Codon usage analysis of expressed genes also showed evidence of horizontal gene transfer, suggesting that many of these enzymes were acquired from the rumen bacteria in an evolutionary response to the carbohydrate-rich environment of the rumen. This study provides evidence of the significant contribution that the protozoa make to carbohydrate breakdown in the rumen, potentially using horizontally acquired genes, and highlights their predatory capacity.
Collapse
Affiliation(s)
- Cate L Williams
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| | - Benjamin J Thomas
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J Creevey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
7
|
Terry SA, Badhan A, Wang Y, Chaves AV, McAllister TA. Fibre digestion by rumen microbiota — a review of recent metagenomic and metatranscriptomic studies. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plant biomass is the most abundant renewable resource on the planet, and the biopolymers of lignocellulose are the foundation of ruminant production systems. Optimizing the saccharification of lignocellulosic feeds is a crucial step in their bioconversion to ruminant protein. Plant cell walls are chemically heterogeneous structures that have evolved to provide structural support and protection to the plant. Ruminants are the most efficient digesters of lignocellulose due to a rich array of bacteria, archaea, fungi, and protozoa within the rumen and lower digestive tract. Metagenomic and metatranscriptomic studies have enhanced the current understanding of the composition, diversity, and function of the rumen microbiome. There is particular interest in identifying the carbohydrate-active enzymes responsible for the ruminal degradation of plant biomass. Understanding the roles of cellulosomes- and polysaccharide-utilising loci in ruminal fibre degradation could provide insight into strategies to enhance forage utilisation by ruminants. Despite advancements in “omics” technology, the majority of rumen microorganisms are still uncharacterised, and their ability to act synergistically is still not understood. By advancing our current knowledge of rumen fibre digestion, there may be opportunity to further improve the productive performance of ruminants fed forage diets.
Collapse
Affiliation(s)
- Stephanie A. Terry
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Alexandre V. Chaves
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
8
|
Feng JM, Jiang CQ, Sun ZY, Hua CJ, Wen JF, Miao W, Xiong J. Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Mol Phylogenet Evol 2019; 143:106687. [PMID: 31740334 DOI: 10.1016/j.ympev.2019.106687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023]
Abstract
Rumen ciliates are a specialized group of ciliates exclusively found in the anaerobic, carbohydrate-rich rumen microenvironment. However, the molecular and mechanistic basis of the physiological and behavioral adaptation of ciliates to the rumen microenvironment is undefined. We used single-cell transcriptome sequencing to explore the adaptive evolution of three rumen ciliates: two entodiniomorphids, Entodinium furca and Diplodinium dentatum; and one vestibuliferid, Isotricha intestinalis. We found that all three species are members of monophyletic orders within the class Litostomatea, with E. furca and D. dentatum in Entodiniomorphida and I. intestinalis in Vestibuliferida. The two entodiniomorphids might use H2-producing mitochondria and the vestibuliferid might use anaerobic mitochondria to survive under strictly anaerobic conditions. Moreover, carbohydrate-active enzyme (CAZyme) genes were identified in all three species, including cellulases, hemicellulases, and pectinases. The evidence that all three species have acquired prokaryote-derived genes by horizontal gene transfer (HGT) to digest plant biomass includes a significant enrichment of gene ontology categories such as cell wall macromolecule catabolic process and carbohydrate catabolic process and the identification of genes in common between CAZyme and HGT groups. These findings suggest that HGT might be an important mechanism in the adaptive evolution of ciliates to the rumen microenvironment.
Collapse
Affiliation(s)
- Jin-Mei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chuan-Qi Jiang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518119, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zong-Yi Sun
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cong-Jie Hua
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Jian-Fan Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology of China, Wuhan 430072, China; CAS Center for Excellence in Animal Evolution and Genetics, Kunming 650223, China.
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Moraïs S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 2019; 43:362-379. [PMID: 31050730 PMCID: PMC6606855 DOI: 10.1093/femsre/fuz007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
The herbivore rumen ecosystem constitutes an extremely efficient degradation machinery for the intricate chemical structure of fiber biomass, thus, enabling the hosting animal to digest its feed. The challenging task of deconstructing and metabolizing fiber is performed by microorganisms inhabiting the rumen. Since most of the ingested feed is comprised of plant fiber, these fiber-degrading microorganisms are of cardinal importance to the ecology of the rumen microbial community and to the hosting animal, and have a great impact on our environment and food sustainability. We summarize herein the enzymological fundamentals of fiber degradation, how the genes encoding these enzymes are spread across fiber-degrading microbes, and these microbes' interactions with other members of the rumen microbial community and potential effect on community structure. An understanding of these concepts has applied value for agriculture and our environment, and will also contribute to a better understanding of microbial ecology and evolution in anaerobic ecosystems.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| |
Collapse
|
10
|
Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019; 13:1843-1854. [PMID: 31062682 DOI: 10.1017/s1751731119000752] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ruminants are unique among livestock due to their ability to efficiently convert plant cell wall carbohydrates into meat and milk. This ability is a result of the evolution of an essential symbiotic association with a complex microbial community in the rumen that includes vast numbers of bacteria, methanogenic archaea, anaerobic fungi and protozoa. These microbes produce a diverse array of enzymes that convert ingested feedstuffs into volatile fatty acids and microbial protein which are used by the animal for growth. Recent advances in high-throughput sequencing and bioinformatic analyses have helped to reveal how the composition of the rumen microbiome varies significantly during the development of the ruminant host, and with changes in diet. These sequencing efforts are also beginning to explain how shifts in the microbiome affect feed efficiency. In this review, we provide an overview of how meta-omics technologies have been applied to understanding the rumen microbiome, and the impact that diet has on the rumen microbial community.
Collapse
|
11
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
12
|
Ali B, Yi Z, Fang Y, Chen L, He K, Liu D, Luo H, Zhao D, Zheng J, He H, Jin Y, Zhao H. Characterization of a fungal thermostable endoglucanase from Chinese Nong-flavor daqu by metatranscriptomic method. Int J Biol Macromol 2019; 121:183-190. [DOI: 10.1016/j.ijbiomac.2018.09.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023]
|
13
|
Ngara TR, Zhang H. Recent Advances in Function-based Metagenomic Screening. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:405-415. [PMID: 30597257 PMCID: PMC6411959 DOI: 10.1016/j.gpb.2018.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Metagenomes from uncultured microorganisms are rich resources for novel enzyme genes. The methods used to screen the metagenomic libraries fall into two categories, which are based on sequence or function of the enzymes. The sequence-based approaches rely on the known sequences of the target gene families. In contrast, the function-based approaches do not involve the incorporation of metagenomic sequencing data and, therefore, may lead to the discovery of novel gene sequences with desired functions. In this review, we discuss the function-based screening strategies that have been used in the identification of enzymes from metagenomes. Because of its simplicity, agar plate screening is most commonly used in the identification of novel enzymes with diverse functions. Other screening methods with higher sensitivity are also employed, such as microtiter plate screening. Furthermore, several ultra-high-throughput methods were developed to deal with large metagenomic libraries. Among these are the FACS-based screening, droplet-based screening, and the in vivo reporter-based screening methods. The application of these novel screening strategies has increased the chance for the discovery of novel enzyme genes.
Collapse
Affiliation(s)
- Tanyaradzwa Rodgers Ngara
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
14
|
Duarte ER, Abrão FO, Oliveira Ribeiro IC, Vieira EA, Nigri AC, Silva KL, Virgínio Júnior GF, Prates Barreto SM, Geraseev LC. Rumen protozoa of different ages of beef cattle raised in tropical pastures during the dry season. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1530676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eduardo Robson Duarte
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Edvaldo Alves Vieira
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina Nigri
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kellerson Luiz Silva
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Luciana Castro Geraseev
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Yi Z, Fang Y, He K, Liu D, Luo H, Zhao D, He H, Jin Y, Zhao H. Directly mining a fungal thermostable α-amylase from Chinese Nong-flavor liquor starter. Microb Cell Fact 2018; 17:30. [PMID: 29471820 PMCID: PMC5822527 DOI: 10.1186/s12934-018-0878-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chinese Nong-flavor (NF) liquor is continuously and stably produced by solid-state fermentation technology for 1000 years, resulting in enrichment of special microbial community and enzymes system in its starter. Based on traditional culture-dependent methods, these functional enzymes are hardly obtained. According to our previous metatranscriptomic analysis, which identifies plenty of thermostable carbohydrate-active enzymes in NF liquor starter, the aim of this study is to provide a direct and efficient way to mine these thermostable enzymes. RESULTS In present study, an alpha-amylase (NFAmy13A) gene, which showed the highest expression level of enzymes in starch degradation at high temperature stage (62 °C), was directly obtained by functional metatranscriptomics from Chinese Nong-flavor liquor starter and expressed in Pichia pastoris. NFAmy13A had a typical signal peptide and shared the highest sequence identity of 64% with α-amylase from Aspergillus niger. The recombinant enzyme of NFAmy13A showed an optimal pH at 5.0-5.5 and optimal temperature at 60 °C. NFAmy13A was activated and stabilized by Ca2+, and its half-lives at 60 and 70 °C were improved significantly from 1.5 and 0.4 h to 16 and 0.7 h, respectively, in the presence of 10 mM CaCl2. Meanwhile, Hg2+, Co2+ and SDS largely inhibited its activity. NFAmy13A showed the maximum activity on amylopectin, followed by various starches, amylose, glycogen, and pullulan, and its specificity activity on amylopectin was 200.4 U/mg. Moreover, this α-amylase efficiently hydrolyzed starches (from corn, wheat, and potato) at high concentrations up to 15 mg/ml. CONCLUSIONS This study provides a direct way to mine active enzymes from man-made environment of NF liquor starter, by which a fungal thermostable α-amylase (NFAmy13A) is successfully obtained. The good characteristics of NFAmy13A in degrading starch at high temperature are consistent with its pivotal role in solid-state fermentation of NF liquor brewing. This work would stimulate mining more enzymes from NF liquor starter and studying their potentially synergistic roles in NF liquor brewing, thus paving the way toward the optimization of liquor production and improvement of liquor quality in future.
Collapse
Affiliation(s)
- Zhuolin Yi
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dayu Liu
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science & Engineering, Zigong, China
| | | | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hai Zhao
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Li F, Neves ALA, Ghoshal B, Guan LL. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants. J Dairy Sci 2017; 101:5605-5618. [PMID: 29274958 DOI: 10.3168/jds.2017-13356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022]
Abstract
Metagenomics and metatranscriptomics can capture the whole genome and transcriptome repertoire of microorganisms through sequencing total DNA/RNA from various environmental samples, providing both taxonomic and functional information with high resolution. The unique and complex rumen microbial ecosystem is receiving great research attention because the rumen microbiota coevolves with the host and equips ruminants with the ability to convert cellulosic plant materials to high-protein products for human consumption. To date, hundreds to thousands of microbial phylotypes have been identified in the rumen using culture-independent molecular-based approaches, and genomic information of rumen microorganisms is rapidly accumulating through the single genome sequencing. However, functional characteristics of the rumen microbiome have not been well described because there are numerous uncultivable microorganisms in the rumen. The advent of metagenomics and metatranscriptomics along with advanced bioinformatics methods can help us better understand mechanisms of the rumen fermentation, which is vital for improving nutrient utilization and animal productivity. Therefore, in this review, we summarize a general workflow to conduct rumen metagenomics and metatranscriptomics and discuss how the data can be interpreted to be useful information. Moreover, we review recent literatures studying associations between the rumen microbiome and host phenotypes (e.g., feed efficiency and methane emissions) using these approaches, aiming to provide a useful guide to include studying the rumen microbiome as one of the research objectives using these 2 approaches.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Andre L A Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Bibaswan Ghoshal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
17
|
Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle. Sci Rep 2017; 7:1276. [PMID: 28455495 PMCID: PMC5430699 DOI: 10.1038/s41598-017-01269-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/28/2017] [Indexed: 11/23/2022] Open
Abstract
Future growth in demand for meat and milk, and the socioeconomic and environmental challenges that farmers face, represent a “grand challenge for humanity”. Improving the digestibility of crop residues such as straw could enhance the sustainability of ruminant production systems. Here, we investigated if transfer of rumen contents from bison to cattle could alter the rumen microbiome and enhance total tract digestibility of a barley straw-based diet. Beef heifers were adapted to the diet for 28 days prior to the experiment. After 46 days, ~70 percent of rumen contents were removed from each heifer and replaced with mixed rumen contents collected immediately after slaughter from 32 bison. This procedure was repeated 14 days later. Intake, chewing activity, total tract digestibility, ruminal passage rate, ruminal fermentation, and the bacterial and protozoal communities were examined before the first and after the second transfer. Overall, inoculation with bison rumen contents successfully altered the cattle rumen microbiome and metabolism, and increased protein digestibility and nitrogen retention, but did not alter fiber digestibility.
Collapse
|
18
|
Takenaka M, Kobayashi T, Inokuma K, Hasunuma T, Maruyama T, Ogino C, Kondo A. Mapping of endoglucanases displayed on yeast cell surface using atomic force microscopy. Colloids Surf B Biointerfaces 2017; 151:134-142. [PMID: 27988474 DOI: 10.1016/j.colsurfb.2016.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/14/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022]
Abstract
The surface of yeast cells has been an attractive interface for the effective use of cellulose. Surface enzymes, however, are difficult to visualize and evaluate. In this study, two kinds of unique anchoring regions were used to display the cellulase, endoglucanase (EG), on a yeast cell surface. Differences in the display level and the localization of EG were observed by atomic force microscopy. By surveying the yeast cell surface with a chemically modified cantilever, the interactive force between the cellulose and EG was measured. Force curve mapping revealed differences in the display levels and the localization of EG according to anchoring regions. The proposed methodology enables visualization of displayed enzymes such as EG on the yeast cell surface.
Collapse
Affiliation(s)
- Musashi Takenaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takuya Kobayashi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA, Hildebrand E, Beavers TJ, Wolfe R, Nicora CD, Purvine SO, Carstensen M, Lipton MS, Spalinger DE, Firkins JL, Wolfe BA, Wrighton KC. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. ISME JOURNAL 2016; 11:691-703. [PMID: 27959345 PMCID: PMC5322302 DOI: 10.1038/ismej.2016.150] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022]
Abstract
Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.
Collapse
Affiliation(s)
- Lindsey M Solden
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Collins
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Palmer, AK, USA
| | - Johanna E Plank
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Erik Hildebrand
- Minnesota Department of Natural Resources, Division of Fish and Wildlife, Wildlife Health Program, Forest Lake, MN, USA
| | - Timothy J Beavers
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Richard Wolfe
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Sam O Purvine
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle Carstensen
- Minnesota Department of Natural Resources, Division of Fish and Wildlife, Wildlife Health Program, Forest Lake, MN, USA
| | - Mary S Lipton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Donald E Spalinger
- Department of Biology, University of Alaska Anchorage, Anchorage, AK, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Barbara A Wolfe
- Department of Veterinary Preventative Medicine, Colllege of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Ribeiro G, Gruninger R, Badhan A, McAllister T. Mining the rumen for fibrolytic feed enzymes. Anim Front 2016. [DOI: 10.2527/af.2016-0019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G.O. Ribeiro
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave South, Lethbridge Alberta, T1J 4B1
| | - R.J. Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave South, Lethbridge Alberta, T1J 4B1
| | - A. Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave South, Lethbridge Alberta, T1J 4B1
| | - T.A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave South, Lethbridge Alberta, T1J 4B1
| |
Collapse
|
21
|
Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 2016; 81:1375-86. [PMID: 25501482 DOI: 10.1128/aem.03682-14] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for 1% and 0.1% of the total non-rRNAs, respectively. The majority (98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen.
Collapse
|
22
|
Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The Role of Ciliate Protozoa in the Rumen. Front Microbiol 2015; 6:1313. [PMID: 26635774 PMCID: PMC4659874 DOI: 10.3389/fmicb.2015.01313] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023] Open
Abstract
First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.
Collapse
Affiliation(s)
- Charles J. Newbold
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gabriel de la Fuente
- Departament de Producció Animal, Escola Tècnica Superior d’Enginyeria Agrària, Universitat de Lleida, Lleida, Spain
| | - Alejandro Belanche
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Eva Ramos-Morales
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Neil R. McEwan
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
23
|
Zhang J, Zhao S, Zhang Y, Sun P, Bu D, Wang J. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows. Curr Microbiol 2015; 71:650-7. [PMID: 26319789 DOI: 10.1007/s00284-015-0898-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China. .,CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry (ASAH), World Agroforestry Centre, East and Central Asia, Beijing, 100081, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Harbin, 150030, People's Republic of China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuanxilu, Haidian, Beijing, 100193, People's Republic of China.
| |
Collapse
|
24
|
Ufarté L, Potocki-Veronese G, Laville É. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 2015; 6:563. [PMID: 26097471 PMCID: PMC4456863 DOI: 10.3389/fmicb.2015.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned.
Collapse
Affiliation(s)
- Lisa Ufarté
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Gabrielle Potocki-Veronese
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Élisabeth Laville
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| |
Collapse
|
25
|
Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases. Appl Microbiol Biotechnol 2015; 99:7997-8009. [DOI: 10.1007/s00253-015-6550-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
26
|
Yang G, Ding Y. Recent advances in biocatalyst discovery, development and applications. Bioorg Med Chem 2014; 22:5604-12. [DOI: 10.1016/j.bmc.2014.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
|
27
|
André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M. CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 2014; 19:17-24. [DOI: 10.1016/j.cbpa.2013.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/24/2013] [Indexed: 01/24/2023]
|
28
|
Xie S, Syrenne R, Sun S, Yuan JS. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design. Curr Opin Biotechnol 2014; 27:195-203. [PMID: 24657913 DOI: 10.1016/j.copbio.2014.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/24/2022]
Abstract
Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.
Collapse
Affiliation(s)
- Shangxian Xie
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Ryan Syrenne
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Su Sun
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Joshua S Yuan
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
29
|
REVIEW: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. ACTA ACUST UNITED AC 2014. [DOI: 10.15232/s1080-7446(15)30076-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 2012; 7:e28967. [PMID: 22238585 PMCID: PMC3253082 DOI: 10.1371/journal.pone.0028967] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/18/2011] [Indexed: 01/11/2023] Open
Abstract
Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)–0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter.
Collapse
Affiliation(s)
- Coralie Damon
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1193, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Frédéric Lehembre
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1193, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Christine Oger-Desfeux
- Pôle Rhône-Alpes de Bioinformatique, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Patricia Luis
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1193, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Jacques Ranger
- Biogéochimie des Ecosystèmes Forestiers, INRA centre de Nancy, Champenoux, France
| | - Laurence Fraissinet-Tachet
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1193, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Roland Marmeisse
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1193, Université de Lyon, Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|