1
|
About F, Pastre T, Boutrou M, Martinez AY, Melzani A, Peugny S, Michaud C, Zouaoui S, Carage T, Rose VS, Demar M, Lavigne JP, Djossou F, O'Callaghan D, Epelboin L, Keriel A. Novel Species of Brucella Causing Human Brucellosis, French Guiana. Emerg Infect Dis 2023; 29:333-340. [PMID: 36692350 PMCID: PMC9881788 DOI: 10.3201/eid2902.220725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human brucellosis is a zoonoses caused by bacteria of the genus Brucella. Infection results in subacute or chronic debilitating disease with nonspecific clinical manifestations and is often associated with consuming unpasteurized dairy products. We report 2 cases of brucellosis in male patients who were hospitalized in distinct towns of French Guiana, an overseas territory of France located on the northeastern shore of South America. Both men were citizens of Brazil working as clandestine goldminers in the deep Amazonian rainforest. Characterization of the 2 bacterial isolates revealed that they represent a potential new species of Brucella. Medical practitioners working in contact with wildlife in this region of the world should be aware of the existence of these pathogens and the potential for human infection.
Collapse
|
2
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
3
|
Aragón-Aranda B, Palacios-Chaves L, Salvador-Bescós M, de Miguel MJ, Muñoz PM, Vences-Guzmán MÁ, Zúñiga-Ripa A, Lázaro-Antón L, Sohlenkamp C, Moriyón I, Iriarte M, Conde-Álvarez R. The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Front Microbiol 2021; 12:614243. [PMID: 34421831 PMCID: PMC8371380 DOI: 10.3389/fmicb.2021.614243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leyre Palacios-Chaves
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | | | - Amaia Zúñiga-Ripa
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leticia Lázaro-Antón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ignacio Moriyón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Whatmore AM, Foster JT. Emerging diversity and ongoing expansion of the genus Brucella. INFECTION GENETICS AND EVOLUTION 2021; 92:104865. [PMID: 33872784 DOI: 10.1016/j.meegid.2021.104865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.
Collapse
Affiliation(s)
- Adrian M Whatmore
- OIE and FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, United Kingdom.
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
A Proof of Principle for the Detection of Viable Brucella spp. in Raw Milk by qPCR Targeting Bacteriophages. Microorganisms 2020; 8:microorganisms8091326. [PMID: 32878169 PMCID: PMC7565414 DOI: 10.3390/microorganisms8091326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Brucellosis is still a global health issue, and surveillance and control of this zoonotic disease in livestock remains a challenge. Human outbreaks are mainly linked to the consumption of unpasteurized dairy products. The detection of human pathogenic Brucella species in food of animal origin is time-consuming and laborious. Bacteriophages are broadly applied to the typing of Brucella isolates from pure culture. Since phages intracellularly replicate to very high numbers, they can also be used as specific indicator organisms of their host bacteria. We developed a novel real-time PCR (qPCR) assay targeting the highly conserved helicase sequence harbored in all currently known Brucella-specific lytic phages. Quality and performance tests determined a limit of detection of <1 genomic copy/µL. In raw milk artificially contaminated with Brucella microti, Izv phages were reliably detected after 39 h of incubation, indicating the presence of viable bacteria. The qPCR assay showed high stability in the milk matrix and significantly shortened the time to diagnosis when compared to traditional culture-based techniques. Hence, our molecular assay is a reliable and sensitive method to analyze phage titers, may help to reduce the hands-on time needed for the screening of potentially contaminated food, and reveals infection risks without bacterial isolation.
Collapse
|
6
|
Ouahrani-Bettache S, Jiménez De Bagüés MP, De La Garza J, Freddi L, Bueso JP, Lyonnais S, Al Dahouk S, De Biase D, Köhler S, Occhialini A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence 2020; 10:868-878. [PMID: 31635539 PMCID: PMC6844557 DOI: 10.1080/21505594.2019.1682762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.
Collapse
Affiliation(s)
| | - María P Jiménez De Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Luca Freddi
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | - Juan P Bueso
- Laboratorio Agroalimentario, Gobierno de Aragón, Zaragoza, Spain
| | | | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Stephan Köhler
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
7
|
Cloeckaert A, Vergnaud G, Zygmunt MS. Omp2b Porin Alteration in the Course of Evolution of Brucella spp. Front Microbiol 2020; 11:284. [PMID: 32153552 PMCID: PMC7050475 DOI: 10.3389/fmicb.2020.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis. In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the “classical” Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata, a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis. The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen.
Collapse
Affiliation(s)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
8
|
Trimmel NE, Walzer C. Infectious Wildlife Diseases in Austria-A Literature Review From 1980 Until 2017. Front Vet Sci 2020; 7:3. [PMID: 32154271 PMCID: PMC7046627 DOI: 10.3389/fvets.2020.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/02/2020] [Indexed: 12/28/2022] Open
Abstract
This literature review examines infectious wildlife disease research in Austria. We analyzed 226 research papers, published between 1980 and 2017. We determined that wildlife disease papers increased significantly from 0.8 ± 0.8 publications per year in the first decade (1980–1989) when compared to 2008–2017 with an average of 12.9 ± 4.1 publications per year. We illustrate information about the most investigated diseases and highlight the lack of research into certain wildlife pathogens. A special emphasis was given to diseases with zoonotic potential. The review showed that research focused on a few select species like the red fox (Vulpes vulpes), red deer (Cervus elaphus), and wild boar (Sus scrofa), all game species. Moreover, diseases affecting livestock and human health were seen more often. The review also found that only a low number of publications actually stated disease prevalence and confidence interval data. The reported diseases identified were classified according to their notifiable status and the distribution at the wildlife–human and wildlife–livestock interface. Furthermore, we try to argue why research into some diseases is prioritized, and why other diseases are underrepresented in current Austrian research. While spatiotemporal indicators could not be assessed due to the variability in methodologies and objectives of various studies, the information provided by this review offers the first comprehensive evaluation of the status of infectious wildlife disease research in Austria. Therefore, this study could assist investigators to identify further areas of priorities for research and conservation efforts and for wildlife management professionals to inform policy and funding strategies. With this review, we want to encourage research in the field of wildlife diseases in Austria to enhance current knowledge in the prevention of further loss in biodiversity and to find new measures to promote “One Health” on a global scale.
Collapse
Affiliation(s)
- Nina Eva Trimmel
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Chris Walzer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria.,Wildlife Conservation Society, Bronx, NY, United States
| |
Collapse
|
9
|
Varesio LM, Willett JW, Fiebig A, Crosson S. A Carbonic Anhydrase Pseudogene Sensitizes Select Brucella Lineages to Low CO 2 Tension. J Bacteriol 2019; 201:e00509-19. [PMID: 31481543 PMCID: PMC6805109 DOI: 10.1128/jb.00509-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Brucella spp. are intracellular pathogens that cause a disease known as brucellosis. Though the genus is highly monomorphic at the genetic level, species have animal host preferences and some defining physiologic characteristics. Of note is the requirement for CO2 supplementation to cultivate particular species, which confounded early efforts to isolate B. abortus from diseased cattle. Differences in the capacity of Brucella species to assimilate CO2 are determined by mutations in the carbonic anhydrase gene, bcaA Ancestral single-nucleotide insertions in bcaA have resulted in frameshifted pseudogenes in B. abortus and B. ovis lineages, which underlie their inability to grow under the low CO2 tension of a standard atmosphere. Incubation of wild-type B. ovis in air selects for mutations that "rescue" a functional bcaA reading frame, which enables growth under low CO2 and enhances the growth rate under high CO2 Accordingly, we show that heterologous expression of functional Escherichia coli carbonic anhydrases enables B. ovis growth in air. Growth of B. ovis is acutely sensitive to a reduction in CO2 tension, while frame-rescued B. ovis mutants are insensitive to CO2 shifts. B. ovis initiates a gene expression program upon CO2 downshift that resembles the stringent response and results in transcriptional activation of its type IV secretion system. Our study provides evidence that loss-of-function insertion mutations in bcaA sensitize the response of B. ovis and B. abortus to reduced CO2 tension relative to that of other Brucella lineages. CO2-dependent starvation and virulence gene expression programs in these species may influence persistence or transmission in natural hosts.IMPORTANCEBrucella spp. are highly related, but they exhibit differences in animal host preference that must be determined by genome sequence differences. B. ovis and the majority of B. abortus strains require high CO2 tension to be cultivated in vitro and harbor conserved insertional mutations in the carbonic anhydrase gene, bcaA, which underlie this trait. Mutants that grow in a standard atmosphere, first reported nearly a century ago, are easily selected in the laboratory. These mutants harbor varied indel polymorphisms in bcaA that restore its consensus reading frame and rescue its function. Loss of bcaA function has evolved independently in the B. ovis and B. abortus lineages and results in a dramatically increased sensitivity to CO2 limitation.
Collapse
Affiliation(s)
- Lydia M Varesio
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Kneipp C, Malik R, Mor SM, Wiethoelter AK. Commentary: Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2019; 10:1859. [PMID: 31474957 PMCID: PMC6703132 DOI: 10.3389/fmicb.2019.01859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cathy Kneipp
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, Sydney, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Siobhan M Mor
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Anke K Wiethoelter
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Detection of Brucella spp. in dogs at Pantanal wetlands. Braz J Microbiol 2018; 50:307-312. [PMID: 30637651 DOI: 10.1007/s42770-018-0006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/02/2018] [Indexed: 10/27/2022] Open
Abstract
Canine brucellosis is an infectious disease that produces reproductive disease in both males and females. Although Brucella canis is more common, the infection by Brucella abortus is more frequent in dogs sharing habitats with livestock and wild animals. We decided to investigate the role of dogs in the maintenance of Brucella spp. in the Pantanal wetland. Serum and whole blood samples were collected from 167 dogs. To detect antibodies against B. abortus and B. canis, buffered acidified plate antigen (BAPA) and agar gel immunodiffusion (AGID) tests were performed. To detect Brucella spp., B. abortus and B. canis DNA, PCR was performed using the bcsp31, BruAb2_0168, and BR00953 genes, respectively. To confirm the PCR results, three bcsp31 PCR products were sequenced and compared with sequences deposited in GenBank. The seropositivity rates of 7.8% and 9% were observed for the AGID and BAPA tests, respectively. Positivity rates of 45.5% and 10.8% were observed when testing bcsp31 and BruAb2_0168, respectively, while there was no positivity for BR00953. The sequenced products had 110 base pairs that aligned with 100% identity to B. abortus, B. canis, and B. suis. Considering our results, dogs may be acting as maintenance hosts of Brucella spp. in the Pantanal region.
Collapse
|
12
|
Jaý M, Girault G, Perrot L, Taunay B, Vuilmet T, Rossignol F, Pitel PH, Picard E, Ponsart C, Mick V. Phenotypic and Molecular Characterization of Brucella microti-Like Bacteria From a Domestic Marsh Frog ( Pelophylax ridibundus). Front Vet Sci 2018; 5:283. [PMID: 30498697 PMCID: PMC6249338 DOI: 10.3389/fvets.2018.00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
Several Brucella isolates have been described in wild-caught and "exotic" amphibians from various continents and identified as B. inopinata-like strains. On the basis of epidemiological investigations conducted in June 2017 in France in a farm producing domestic frogs (Pelophylax ridibundus) for human consumption of frog's legs, potentially pathogenic bacteria were isolated from adults showing lesions (joint and subcutaneous abscesses). The bacteria were initially misidentified as Ochrobactrum anthropi using a commercial identification system, prior to being identified as Brucella spp. by MALDI-TOF assay. Classical phenotypic identification confirmed the Brucella genus, but did not make it possible to conclude unequivocally on species determination. Conventional and innovative bacteriological and molecular methods concluded that the investigated strain was very close to B. microti species, and not B. inopinata-like strains, as expected. The methods included growth kinetic, antimicrobial susceptibility testing, RT-PCR, Bruce-Ladder, Suis-Ladder, RFLP-PCR, AMOS-ERY, MLVA-16, the ectoine system, 16S rRNA and recA sequence analyses, the LPS pattern, in silico MLST-21, comparative whole-genome analyses (including average nucleotide identity ANI and whole-genome SNP analysis) and HRM-PCR assays. Minor polyphasic discrepancies, especially phage lysis and A-dominant agglutination patterns, as well as, small molecular divergences suggest the investigated strain should be considered a B. microti-like strain, raising concerns about its environmental persistence and unknown animal pathogenic and zoonotic potential as for other B. microti strains described to date.
Collapse
Affiliation(s)
- Maryne Jaý
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Guillaume Girault
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Ludivine Perrot
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Benoit Taunay
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Thomas Vuilmet
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | | | | | | | - Claire Ponsart
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Virginie Mick
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| |
Collapse
|
13
|
Vergnaud G, Hauck Y, Christiany D, Daoud B, Pourcel C, Jacques I, Cloeckaert A, Zygmunt MS. Genotypic Expansion Within the Population Structure of Classical Brucella Species Revealed by MLVA16 Typing of 1404 Brucella Isolates From Different Animal and Geographic Origins, 1974-2006. Front Microbiol 2018; 9:1545. [PMID: 30050522 PMCID: PMC6052141 DOI: 10.3389/fmicb.2018.01545] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown the usefulness of MLVA16 as a rapid molecular identification and classification method for Brucella species and biovars including recently described novel Brucella species from wildlife. Most studies were conducted on a limited number of strains from limited geographic/host origins. The objective of this study was to assess genetic diversity of Brucella spp. by MLVA16 on a larger scale. Thus, 1404 animal or human isolates collected from all parts of the world over a period of 32 years (1974-2006) were investigated. Selection of the 1404 strains was done among the approximately 4000 strains collection of the BCCN (Brucella Culture Collection Nouzilly), based on classical biotyping and on the animal/human/geographic origin over the time period considered. MLVA16 was performed on extracted DNAs using high throughput capillary electrophoresis. The 16 loci were amplified in four multiplex PCR reactions. This large scale study firstly confirmed the accuracy of MLVA16 typing for Brucella species and biovar identification and its congruence with the recently described Extended Multilocus Sequence Analysis. In addition, it allowed identifying novel MLVA11 (based upon 11 slowly evolving VNTRs) genotypes representing an increase of 15% relative to the previously known Brucella MLVA11 genotypes. Cluster analysis showed that among the MLVA16 genotypes some were genetically more distant from the major classical clades. For example new major clusters of B. abortus biovar 3 isolated from cattle in Sub-Saharan Africa were identified. For other classical species and biovars this study indicated also genotypic expansion within the population structure of classical Brucella species. MLVA proves to be a powerful tool to rapidly assess genetic diversity of bacterial populations on a large scale, as here on a large collection of strains of the genomically homogeneous genus Brucella. The highly discriminatory power of MLVA appears of particular interest as a first step for selection of Brucella strains for whole-genome sequencing. The MLVA data of this study were added to the public Brucella MLVA database at http://microbesgenotyping.i2bc.paris-saclay.fr. Current version Brucella_4_3 comprises typing data from more than 5000 strains including in silico data analysis of public whole genome sequence datasets.
Collapse
Affiliation(s)
- Gilles Vergnaud
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yolande Hauck
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Christiany
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brendan Daoud
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Jacques
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.,IUT de Tours, Tours, France
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| |
Collapse
|
14
|
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front Microbiol 2018; 9:641. [PMID: 29675004 PMCID: PMC5896264 DOI: 10.3389/fmicb.2018.00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Collapse
Affiliation(s)
- Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean J Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Hamdy MER, Zaki HM. Detection of virulence-associated genes in Brucella melitensis biovar 3, the prevalent field strain in different animal species in Egypt. Open Vet J 2018; 8:112-117. [PMID: 29721440 PMCID: PMC5918124 DOI: 10.4314/ovj.v8i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Abstract
The current study involved detection of three virulence genes (bvfA, virB, ure) by PCR in 52 isolates of Brucella melitensis biovar 3, recovered from different animal species (28 sheep, 10 goats, 9 cattle and 5 buffaloes). Of the 52 B. melitensis strains; 48 (92.3%) isolates carried bvfA genes, 51 (98.1%) isolates had virB genes and 50 (96.2%) isolates were positive for ure genes. The distribution of the virulence genes is not affected by crossing the original host barriers of the animal species, as the three virulence factors (bvfA, virB and ure) detected in 28 B. melitensis isolates obtained from ovine species in a ratio of 26/28 (92.9%), 27/28 (96.4%) and 28/28 (100%), respectively. While 10 isolates originating from goats revealed a ratio of 10/10 (100%), 10/10 (100%) and 9/10 (90%) to the same order of virulence genes. Nearly, similar results of virulence genes detection were obtained in B. melitensis obtained from bovine (8/9, 9/9 and 8/9) and Buffalos (4/5, 5/5 and 5/5), respectively. The high prevalence of virulence-associated genes among the B. melitensis isolates detected from different animal species in Egypt indicates a potential virulence of this bacterium.
Collapse
Affiliation(s)
- Mahmoud E R Hamdy
- Department of Brucellosis Research, Animal Health Research Institute, Cairo, Egypt
| | - Hoda M Zaki
- Department of Brucellosis Research, Animal Health Research Institute, Cairo, Egypt
| |
Collapse
|
16
|
El-Sayed A, Awad W. Brucellosis: Evolution and expected comeback. Int J Vet Sci Med 2018; 6:S31-S35. [PMID: 30761318 PMCID: PMC6161863 DOI: 10.1016/j.ijvsm.2018.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a serious infectious disease which causes great direct and indirect economic loses for animal holders worldwide such as the reduction of milk and meat production through abortions/culling of positive reactors, the expense of disease control/eradication and farmers compensation. Although the disease was eradicated from most of the industrial countries, it remains one of the most common zoonotic diseases in developing countries being responsible for more than 500,000 new cases yearly. Brucella is considered to be a bioterrorism organism due to its low infectious doses (10-100 bacteria), capability of persistence in the environment, rapid transmission via different routes including aerosols, and finally due to its difficult treatment by antibiotics.There are many reasons to believe that a new comeback of brucellosis may occur in near future. This expectation is supported by the recent discovery of new atypical Brucella species with new genetic properties and the recent reports of (man to man) disease transmission as will be discussed later. The development of new concepts and measurements for disease control is urgently required. In the present review, the evolution of Brucella and the different factors favoring its comeback are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | | |
Collapse
|
17
|
Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood. Viruses 2017; 9:v9060144. [PMID: 28604602 PMCID: PMC5490821 DOI: 10.3390/v9060144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.
Collapse
|
18
|
Al Dahouk S, Köhler S, Occhialini A, Jiménez de Bagüés MP, Hammerl JA, Eisenberg T, Vergnaud G, Cloeckaert A, Zygmunt MS, Whatmore AM, Melzer F, Drees KP, Foster JT, Wattam AR, Scholz HC. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep 2017; 7:44420. [PMID: 28300153 PMCID: PMC5353553 DOI: 10.1038/srep44420] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.
Collapse
Affiliation(s)
- Sascha Al Dahouk
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany.,RWTH Aachen University, Department of Internal Medicine III, Aachen, Germany
| | - Stephan Köhler
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - Alessandra Occhialini
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - María Pilar Jiménez de Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Jens Andre Hammerl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
| | | | - Gilles Vergnaud
- I2BC, CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | | | - Falk Melzer
- Friedrich-Loeffler-Institut, German National Reference Laboratory for Animal Brucellosis, Jena, Germany
| | - Kevin P Drees
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Jeffrey T Foster
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Holger C Scholz
- Bundeswehr Institute of Microbiology and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
19
|
Arias MA, Santiago L, Costas-Ramon S, Jaime-Sánchez P, Freudenberg M, Jiménez De Bagüés MP, Pardo J. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti. Front Cell Infect Microbiol 2017; 6:205. [PMID: 28119856 PMCID: PMC5220065 DOI: 10.3389/fcimb.2016.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti, was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8+ T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2-/-, TLR4-/-, TLR9-/-, TLR2×4-/- and TLR2×4×9-/-. WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4-/- and TLR2×4×9-/- mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti-infected dendritic cells from TLR2×4-/- and TLR2×4×9-/- mice. Finally, it was found that Tc cells from TLR2×4-/- and TLR2×4×9-/- mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8+ Tc cells.
Collapse
Affiliation(s)
- Maykel A Arias
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Llipsy Santiago
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Santiago Costas-Ramon
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Paula Jaime-Sánchez
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Marina Freudenberg
- Max-Planck Institute for Immunobiology and Epigenetics Freiburg, Germany
| | - Maria P Jiménez De Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2, CITA-Universidad de Zaragoza Zaragoza, Spain
| | - Julián Pardo
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of ZaragozaZaragoza, Spain; Nanoscience Institute of Aragon, University of ZaragozaZaragoza, Spain; Aragon I+D FoundationZaragoza, Spain
| |
Collapse
|
20
|
Mühldorfer K, Wibbelt G, Szentiks CA, Fischer D, Scholz HC, Zschöck M, Eisenberg T. The role of 'atypical' Brucella in amphibians: are we facing novel emerging pathogens? J Appl Microbiol 2016; 122:40-53. [PMID: 27740712 DOI: 10.1111/jam.13326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023]
Abstract
AIMS To discuss together the novel cases of Brucella infections in frogs with the results of published reports to extend our current knowledge on 'atypical' brucellae isolated from amphibians and to discuss the challenges we face on this extraordinary emerging group of pathogens. METHODS AND RESULTS Since our first description, an additional 14 isolates from four different frog species were collected. Novel isolates and a subset of Brucella isolates previously cultured from African bullfrogs were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Fourier transform-infrared (FT-IR) spectroscopy and broth microdilution susceptibility testing. MALDI-TOF MS worked very efficiently for an accurate bacterial identification to the genus level. Within the cluster analysis, 'atypical' brucellae grouped distant from Brucella melitensis and were even more separated by FT-IR spectroscopy with respect to their geographical origin. Minimum inhibitory concentrations of 14 antimicrobial substances are provided as baseline data on antimicrobial susceptibility. CONCLUSIONS The case history of Brucella infections in amphibians reveals a variety of pathologies ranging from localized manifestations to systemic infections. Some isolates seem to be capable of causing high mortality in zoological exhibitions putting higher demands on the management of endangered frog species. There is considerable risk in overlooking and misidentifying 'atypical' Brucella in routine diagnostics. SIGNIFICANCE AND IMPACT OF THE STUDY Brucella have only recently been described in cold-blooded vertebrates. Their presence in frog species native to Africa, America and Australia indicates a more common occurrence in amphibians than previously thought. This study provides an extensive overview of amphibian brucellae by highlighting the main features of their clinical significance, diagnosis and zoonotic potential.
Collapse
Affiliation(s)
- K Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - G Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - C A Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - D Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - H C Scholz
- Bundeswehr Institute of Microbiology, German Center for Infection Research (DZIF), Munich, Germany
| | - M Zschöck
- Hessian State Laboratory (LHL), Giessen, Germany
| | - T Eisenberg
- Hessian State Laboratory (LHL), Giessen, Germany
| |
Collapse
|
21
|
Hammerl JA, Göllner C, Al Dahouk S, Nöckler K, Reetz J, Hertwig S. Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata. Front Microbiol 2016; 7:24. [PMID: 26858702 PMCID: PMC4729917 DOI: 10.3389/fmicb.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analyzed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from Brucella inopinata. BiPBO1 is a siphovirus that infects several Brucella species including Brucella abortus and Brucella melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1). The bacterial (attB) and phage (attP) attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Jens A. Hammerl
- Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Mancilla M. Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence. Front Cell Infect Microbiol 2016; 5:98. [PMID: 26779449 PMCID: PMC4700419 DOI: 10.3389/fcimb.2015.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Dissociation encompasses changes in a series of phenotypes: colony and cell morphology, inmunological and biochemical reactions and virulence. The concept is generally associated to the in vitro transition between smooth (S) and rough (R) colonies, a phenotypic observation in Gram-negative bacteria commonly made since the beginning of microbiology as a science. It is also well known that the loss of the O-polysaccharide, the most external lipopolysaccharide (LPS) moiety, triggers the change in the colony phenotype. Although dissociation is related to one of the most basic features used to distinguish between species, i.e., colony morphology, and, in the case of pathogens, predict their virulence behavior, it has been considered a laboratory artifact and thus did not gain further attention. However, recent insights into genetics and pathogenesis of members of Brucella, causative agents of brucellosis, have brought a new outlook on this experimental fact, suggesting that it plays a role beyond the laboratory observations. In this perspective article, the current knowledge on Brucella LPS genetics and its connection with dissociation in the frame of evolution is discussed. Latest reports support the notion that, by means of a better understanding of genetic pathways linked to R phenotype and the biological impact of this intriguing "old" phenomenon, unexpected applications can be achieved.
Collapse
Affiliation(s)
- Marcos Mancilla
- Research and Development Department, ADL Diagnostic Chile Ltd.Puerto Montt, Chile
| |
Collapse
|
23
|
First isolation and characterization of Brucella microti from wild boar. BMC Vet Res 2015; 11:147. [PMID: 26163135 PMCID: PMC4499207 DOI: 10.1186/s12917-015-0456-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella microti was first isolated from common vole (Microtus arvalis) in the Czech Republic in Central Europe in 2007. As B. microti is the only Brucella species known to live in soil, its distribution, ecology, zoonotic potential, and genomic organization is of particular interest. The present paper is the first to report the isolation of B. microti from a wild boar (Sus scrofa), which is also the first isolation of this bacterial species in Hungary. RESULTS The B. microti isolate was cultured, after enrichment in Brucella-selective broth, from the submandibular lymph node of a female wild boar that was taken by hunters in Hungary near the Austrian border in September 2014. Histological and immunohistological examinations of the lymph node sections with B. abortus-, B. suis- and B. canis-specific sera gave negative results. The isolate did not require CO2 for growth, was oxidase, catalase, and urease positive, H2S negative, grew well in the presence of 20 μg/ml basic fuchsin and thionin, and had brownish pigmentation after three days of incubation. It gave strong positive agglutination with anti-A and anti-M but had a negative reaction with anti-R monospecific sera. The API 20 NE test identified it as Ochrobactrum anthropi with 99.9% identity, and it showed B. microti-specific banding pattern in the Bruce- and Suis-ladder multiplex PCR systems. Whole genome re-sequencing identified 30 SNPs in orthologous loci when compared to the B. microti reference genome available in GenBank, and the MLVA analysis yielded a unique profile. CONCLUSIONS Given that the female wild boar did not develop any clinical disease, we hypothesize that this host species only harboured the bacterium, serving as a possible reservoir capable of maintaining and spreading this pathogen. The infectious source could have been either a rodent, a carcass that had been eaten or infection occurred via the boar rooting in soil. The low number of discovered SNPs suggests an unexpectedly high level of genetic homogeneity in this Brucella species.
Collapse
|
24
|
Experimental infection of chicken embryos with recently described Brucella microti: Pathogenicity and pathological findings. Comp Immunol Microbiol Infect Dis 2015; 41:28-34. [PMID: 26264524 DOI: 10.1016/j.cimid.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/11/2015] [Accepted: 06/20/2015] [Indexed: 11/22/2022]
Abstract
Brucellae are facultative intracellular pathogens causing disease in a wide range of domestic and wild animals as well as in humans. Brucella (B.) microti is a recently recognized species and was isolated from common voles (Microtus arvalis), red foxes and soil in Austria and the Czech Republic. Its pathogenicity for livestock and its zoonotic potential has not been confirmed yet. In the present study 25 SPF chicken embryos were inoculated at day 11 of age with 1.6×10(3) and 1.6×10(5)B. microti by yolk sac and allantoic sac routes. Re-isolation of B. microti indicated rapid multiplication of bacteria (up to 1.7×10(12)CFU). B. microti provoked marked gross lesions, i.e. hemorrhages and necroses. All inoculated embryos were dead (100% mortality) in between 2nd and 4th day post inoculation. The predominant histopathological lesion was necroses in liver, kidneys, lungs, spleen, gastrointestinal tract, spinal meninges, yolk sac and chorioallantoic membrane. Immunohistochemical examination showed the presence of Brucella antigen in nearly all of these organs, with infection being mainly restricted to non-epithelial cells or tissues. This study provides the first results on the multiplication and pathogenicity of the mouse pathogenic B. microti in chicken embryos. These data suggest that, even though chicken are not mammals, they could provide a useful tool for understanding the pathogenesis of B. microti associated disease.
Collapse
|
25
|
Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions. Appl Environ Microbiol 2014; 81:578-86. [PMID: 25381237 DOI: 10.1128/aem.02928-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.
Collapse
|
26
|
Whatmore AM, Davison N, Cloeckaert A, Al Dahouk S, Zygmunt MS, Brew SD, Perrett LL, Koylass MS, Vergnaud G, Quance C, Scholz HC, Dick EJ, Hubbard G, Schlabritz-Loutsevitch NE. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol 2014; 64:4120-4128. [PMID: 25242540 DOI: 10.1099/ijs.0.065482-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).
Collapse
Affiliation(s)
- Adrian M Whatmore
- OIE/WHO/FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal Health and Veterinary Laboratories Agency (AHVLA), Woodham Lane, Addlestone KT15 3NB, UK
| | - Nicholas Davison
- Animal Health and Veterinary Laboratories Agency (AHVLA), Polwhele, Truro TR4 9AD, UK
| | - Axel Cloeckaert
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Sascha Al Dahouk
- Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Michel S Zygmunt
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Simon D Brew
- OIE/WHO/FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal Health and Veterinary Laboratories Agency (AHVLA), Woodham Lane, Addlestone KT15 3NB, UK
| | - Lorraine L Perrett
- OIE/WHO/FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal Health and Veterinary Laboratories Agency (AHVLA), Woodham Lane, Addlestone KT15 3NB, UK
| | - Mark S Koylass
- OIE/WHO/FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal Health and Veterinary Laboratories Agency (AHVLA), Woodham Lane, Addlestone KT15 3NB, UK
| | - Gilles Vergnaud
- DGA/MRIS - Mission pour la Recherche et l'Innovation Scientifique, F-92221 Bagneux, France.,CNRS, F-91405 Orsay, France.,Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, F-91405 Orsay, France
| | - Christine Quance
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, USDA-APHIS, Ames, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Holger C Scholz
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Gene Hubbard
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
27
|
Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2014; 5:213. [PMID: 24860561 PMCID: PMC4026726 DOI: 10.3389/fmicb.2014.00213] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional Heredia, Costa Rica ; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| |
Collapse
|
28
|
Schlatter DC, Kinkel LL. Global biogeography ofStreptomycesantibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 2014; 88:386-97. [DOI: 10.1111/1574-6941.12307] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; Saint Paul MN USA
| |
Collapse
|
29
|
Garin-Bastuji B, Mick V, Le Carrou G, Allix S, Perrett LL, Dawson CE, Groussaud P, Stubberfield EJ, Koylass M, Whatmore AM. Examination of taxonomic uncertainties surrounding Brucella abortus bv. 7 by phenotypic and molecular approaches. Appl Environ Microbiol 2014; 80:1570-9. [PMID: 24362435 PMCID: PMC3957594 DOI: 10.1128/aem.03755-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023] Open
Abstract
Brucella taxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 of Brucella abortus was suspended from the Approved Lists of Bacterial Names Brucella classification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture of B. abortus biovars 3 and 5. To formally clarify the situation, all isolates previously identified as B. abortus bv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to the B. abortus species. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into the Brucella classification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity of Brucella taxonomy. This study suggests that worldwide collections could include strains misidentified as B. abortus bv. 7, and it highlights the need to verify their real taxonomic position.
Collapse
Affiliation(s)
- Bruno Garin-Bastuji
- Paris-Est University-ANSES, Animal Health Laboratory, Bacterial Zoonoses Unit, National Reference Centre for Human Brucellosis, National & EU/OIE/FAO Reference Laboratory for Animal Brucellosis, Maisons-Alfort, France
| | - Virginie Mick
- Paris-Est University-ANSES, Animal Health Laboratory, Bacterial Zoonoses Unit, National Reference Centre for Human Brucellosis, National & EU/OIE/FAO Reference Laboratory for Animal Brucellosis, Maisons-Alfort, France
| | - Gilles Le Carrou
- Paris-Est University-ANSES, Animal Health Laboratory, Bacterial Zoonoses Unit, National Reference Centre for Human Brucellosis, National & EU/OIE/FAO Reference Laboratory for Animal Brucellosis, Maisons-Alfort, France
| | - Sebastien Allix
- Paris-Est University-ANSES, Animal Health Laboratory, Bacterial Zoonoses Unit, National Reference Centre for Human Brucellosis, National & EU/OIE/FAO Reference Laboratory for Animal Brucellosis, Maisons-Alfort, France
| | - Lorraine L. Perrett
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Claire E. Dawson
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Pauline Groussaud
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Emma J. Stubberfield
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Mark Koylass
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Adrian M. Whatmore
- FAO/WHO Collaborating Centre for Brucellosis/OIE Brucellosis Reference Centre, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| |
Collapse
|
30
|
Jiménez de Bagüés MP, Iturralde M, Arias MA, Pardo J, Cloeckaert A, Zygmunt MS. The new strains Brucella inopinata BO1 and Brucella species 83-210 behave biologically like classic infectious Brucella species and cause death in murine models of infection. J Infect Dis 2014; 210:467-72. [PMID: 24558120 DOI: 10.1093/infdis/jiu102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. METHODS The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. RESULTS Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. CONCLUSIONS The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species.
Collapse
Affiliation(s)
| | - María Iturralde
- Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza
| | - Maykel A Arias
- Centro de Investigación y Tecnología Agroalimentaria, Unidad de Sanidad Animal Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza
| | - Julián Pardo
- Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza Fundación Aragon I+D, Zaragoza, Spain
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Michel S Zygmunt
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
31
|
Abstract
Abstract
In 2002 a pest biologist (LEIRS 2002) calculated the survival chances of the European hamster (Cricetus cricetus) according to data provided by participants of the meeting of the International Hamster Workgroup in Tongeren. His model was based predominantly on demographic data as birth rates and predicted that the European hamster will be extinct in Western Europe within the next 50 years. Since then, the mean number of litters females raise in a year has diminished from 2-3 to 1-2. It is thus to be feared that the remaining time is only half as long as predicted and extinction might occur around 2030. However, since then hamster protection measures have improved considerably and two major milestones have been reached: (1) we are able to breed captive hamsters in a sufficient number and (2) most released hamsters survive long enough to reproduce once. Thus, at the present state we can claim that the hamster won.t go extinct as long as such breeding and releasing programs are in place. However, we haven.t achieved a state yet at which it is clear that the hamster will survive with its own means when such programs are stopped. To work on this will be the task of the coming years. This review might be a starting point for that. It reflects on which other factors possibly impair the survival of European hamster populations besides some aspects of modern agriculture, thus it searches for parameters which are not yet considered in conservation programs. Historical data as well as observations and research data from other species are reviewed. Additionally, new insights from the subterranean life of European hamsters in outdoor terrariums are presented, which suggest that the soil as habitat might need more attention in conservation. However, this conjecture can provide only new ideas, which still have to be confirmed by research. The intention is to spark a lively discussion on such potential alternative reasons for the decline of European hamsters, whether some of them are worth being investigated and whether we overlooked something. There is not much time left.
Collapse
|