1
|
Luong NDM, Guillier L, Martin-Latil S, Batejat C, Leclercq I, Druesne C, Sanaa M, Chaix E. Database of SARS-CoV-2 and coronaviruses kinetics relevant for assessing persistence in food processing plants. Sci Data 2022; 9:654. [PMID: 36289246 PMCID: PMC9606249 DOI: 10.1038/s41597-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different environmental conditions represents a key step for better understanding the virus transmission. This work aimed to present a reproducible procedure for collecting data of stability and inactivation kinetics from the scientific literature. The aim was to identify data useful for characterizing the persistence of viruses in the food production plants. As a result, a large dataset related to persistence on matrices or in liquid media under different environmental conditions is presented. This procedure, combining bibliographic survey, data digitalization techniques and predictive microbiological modelling, identified 65 research articles providing 455 coronaviruses kinetics. A ranking step as well as a technical validation with a Gage Repeatability & Reproducibility process were performed to check the quality of the kinetics. All data were deposited in public repositories for future uses by other researchers.
Collapse
Affiliation(s)
| | | | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, Maisons-Alfort, France
| | - Christophe Batejat
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - India Leclercq
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - Christine Druesne
- Research fundings & scientific watch department, ANSES, Maisons-Alfort, France
| | - Moez Sanaa
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Estelle Chaix
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| |
Collapse
|
2
|
Evdokimova SA, Nokhaeva VS, Karetkin BA, Guseva EV, Khabibulina NV, Kornienko MA, Grosheva VD, Menshutina NV, Shakir IV, Panfilov VI. A Study on the Synbiotic Composition of Bifidobacterium bifidum and Fructans from Arctium lappa Roots and Helianthus tuberosus Tubers against Staphylococcus aureus. Microorganisms 2021; 9:930. [PMID: 33926121 PMCID: PMC8146412 DOI: 10.3390/microorganisms9050930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
A number of mechanisms have been proposed explaining probiotics and prebiotics benefit human health, in particular, probiotics have a suppression effect on pathogen growth that can be enhanced with the introduction of prebiotics. In vitro models enhanced with computational biology can be useful for selecting a composition with prebiotics from new plant sources with the greatest synergism. Water extracts from burdock root and Jerusalem artichoke tubers were purified by ultrafiltration and activated charcoal and concentrated on a rotary evaporator. Fructans were precipitated with various concentrations of ethanol. Bifidobacterium bifidum 8 VKPM AC-2136 and Staphylococcus aureus ATCC 43300 strains were applied to estimate the synbiotic effect. The growth of bifidobacteria and staphylococci in monocultures and cocultures in broths with glucose, commercial prebiotics, as well as isolated fructans were studied. The minimum inhibitory concentrations (MICs) of lactic and acetic acids for the Staphylococcus strain were determined. A quantitative model joining the formation of organic acids by probiotics as antagonism factors and the MICs of pathogens (as the measure of their inhibition) was tested in cocultures and showed a high predictive value (R2 ≥ 0.86). The synbiotic factor obtained from the model was calculated based on the experimental data and obtained constants. Fructans precipitated with 20% ethanol and Bifidobacterium bifidum have the greater synergism against Staphylococcus.
Collapse
Affiliation(s)
- Svetlana A. Evdokimova
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Vera S. Nokhaeva
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Boris A. Karetkin
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Elena V. Guseva
- Department of Cybernetics of Chemical Technological Processes, Faculty of Digital Technologies and Chemical Engineering, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (E.V.G.); (N.V.M.)
| | - Natalia V. Khabibulina
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Maria A. Kornienko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Veronika D. Grosheva
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Natalia V. Menshutina
- Department of Cybernetics of Chemical Technological Processes, Faculty of Digital Technologies and Chemical Engineering, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (E.V.G.); (N.V.M.)
| | - Irina V. Shakir
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Victor I. Panfilov
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| |
Collapse
|
3
|
Duqué B, Haddad N, Rossero A, Membré JM, Guillou S. Influence of cell history on the subsequent inactivation of Campylobacter jejuni during cold storage under modified atmosphere. Food Microbiol 2019; 84:103263. [DOI: 10.1016/j.fm.2019.103263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
4
|
Karetkin BA, Guseva EV, Evdokimova SA, Mishchenko AS, Khabibulina NV, Grosheva VD, Menshutina NV, Panfilov VI. A quantitative model of Bacillus cereus ATCC 9634 growth inhibition by bifidobacteria for synbiotic effect evaluation. World J Microbiol Biotechnol 2019; 35:89. [PMID: 31134431 DOI: 10.1007/s11274-019-2665-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
The present study is dedicated to the development of novel criteria for assessing the synbiotic effect of prebiotic and probiotic composition against a specific pathogen. These criteria were obtained from the quantitative model of Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 (as a model food contaminant) competition in co-culture fermentation. The model is based on the hypothesis that probiotics can reduce the specific growth rate of non-probiotics by producing short-chain fatty acids. To define the relationship between the specific growth rate of non-probiotics and short-chain fatty acid yields, the inhibition constants were determined separately for each inhibitor produced by bifidobacteria (lactic, acetic and propionic acids) in a pure culture of bacilli. Two different equations based on the minimum inhibitor concentration (MIC) and inhibition constant (Ki) were used to connect the specific growth rate and concentrations of inhibitors. The yields of the inhibitors mentioned above were obtained from co-culture experiments. The experimental values and the values predicted by the model of Bacillus count did not differ significantly (R2 not less than 0.83) in the competition experiments. Therefore, the general criterion of the synbiotic effect was derived from the model and presents the coefficient of non-probiotic specific growth rate reduction as a result of probiotic growth and inhibitor formation in the final co-culture fermentation. This criterion has been examined for different commercial prebiotics coupled with the Bifidobacterium adolescentis strain. The synergistic combination of inulin GR with bifidobacteria had the best effect against Bacillus cereus ATCC 9634.
Collapse
Affiliation(s)
- Boris A Karetkin
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia.
| | - Elena V Guseva
- Department of Cybernetics of Chemical Engineering Processes, Faculty of Information Technologies and Management, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Svetlana A Evdokimova
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Anastasia S Mishchenko
- Department of Cybernetics of Chemical Engineering Processes, Faculty of Information Technologies and Management, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Natalia V Khabibulina
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Veronika D Grosheva
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Natalia V Menshutina
- Department of Cybernetics of Chemical Engineering Processes, Faculty of Information Technologies and Management, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| | - Victor I Panfilov
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047, Moscow, Russia
| |
Collapse
|
5
|
Nyhan L, Begley M, Mutel A, Qu Y, Johnson N, Callanan M. Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiol 2018; 74:75-85. [DOI: 10.1016/j.fm.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/27/2018] [Accepted: 03/07/2018] [Indexed: 11/28/2022]
|
6
|
O'Flaherty E, Membré JM, Cummins E. Meta-analysis of the reduction of antibiotic-sensitive and antibiotic-resistant Escherichia coli as a result of low- and medium-pressure UV lamps. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:612-620. [PMID: 29851414 DOI: 10.2166/wst.2018.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is vital that harmful bacteria are removed from water and wastewater treatment plants to prevent human/environmental exposure. This paper examines the log reduction of antibiotic-sensitive (AS) and antibiotic-resistant (AR) Escherichia coli (E. coli) as a result of low-pressure (LP) and medium-pressure (MP) UV lamps. A meta-analysis was performed and a mixed-effect model was created in which 303 data points on the log reduction of E. coli from UV treatment were collected. The results show that in order to achieve a 6 log reduction using an MP lamp, on average a UV level of 7.3 mJ/cm2 for AS E. coli and 7.5 mJ/cm2 for AR E. coli were required. Using an LP lamp, a UV level of 8.1 mJ/cm2 for AS E. coli and 8.4 mJ/cm2 for AR E. coli were required. The results show there is no significant difference between the inactivation of AR and AS E. coli at different UV levels. The model predicts that AR or AS E. coli will be inactivated at UV levels lower than the recommended UV operation conditions (40 mJ/cm2), but it is important to use this UV level to inactivate other harmful microorganisms.
Collapse
Affiliation(s)
- Eithne O'Flaherty
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland E-mail:
| | | | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland E-mail:
| |
Collapse
|
7
|
Polese P, Torre MD, Stecchini ML. Praedicere Possumus: An Italian web-based application for predictive microbiology to ensure food safety. Ital J Food Saf 2018; 7:6943. [PMID: 29732330 PMCID: PMC5913704 DOI: 10.4081/ijfs.2018.6943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/23/2022] Open
Abstract
The use of predictive modelling tools, which mainly describe the response of microorganisms to a particular set of environmental conditions, may contribute to a better understanding of microbial behaviour in foods. In this paper, a tertiary model, in the form of a readily available and userfriendly web-based application Praedicere Possumus (PP) is presented with research examples from our laboratories. Through the PP application, users have access to different modules, which apply a set of published models considered reliable for determining the compliance of a food product with EU safety criteria and for optimising processing throughout the identification of critical control points. The application pivots around a growth/no-growth boundary model, coupled with a growth model, and includes thermal and non-thermal inactivation models. Integrated functionalities, such as the fractional contribution of each inhibitory factor to growth probability (f) and the time evolution of the growth probability (Pt), have also been included. The PP application is expected to assist food industry and food safety authorities in their common commitment towards the improvement of food safety.
Collapse
Affiliation(s)
| | - Manuela Del Torre
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Mara Lucia Stecchini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| |
Collapse
|
8
|
Towards transparent and consistent exchange of knowledge for improved microbiological food safety. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Wang R, Sun L, Wang Y, Deng Y, Fang Z, Liu Y, Liu Y, Sun D, Deng Q, Gooneratne R. Growth and Hemolysin Production Behavior of Vibrio parahaemolyticus in Different Food Matrices. J Food Prot 2018; 81:246-253. [PMID: 29360402 DOI: 10.4315/0362-028x.jfp-17-308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The growth and hemolytic activity profiles of two Vibrio parahaemolyticus strains (ATCC 17802 and ATCC 33847) in shrimp, oyster, freshwater fish, pork, chicken, and egg fried rice were investigated, and a prediction system for accurate microbial risk assessment was developed. The two V. parahaemolyticus strains displayed a similar growth and hemolysin production pattern in the foods at 37°C. Growth kinetic parameters showed that V. parahaemolyticus displayed higher maximum specific growth rate and shorter lag time values in shrimp > freshwater fish > egg fried rice> oyster > chicken > pork. Notably, there was a similar number of V. parahaemolyticus in all of these samples at the stationary phase. The hemolytic activity of V. parahaemolyticus in foods increased linearly with time ( R2 > 0.97). The rate constant ( K) of hemolytic activity was higher in shrimp, oyster, freshwater fish, and egg fried rice than in pork and chicken. Significantly higher hemolytic activity of V. parahaemolyticus was evident in egg fried rice > shrimp > freshwater fish > chicken > oyster > pork. The above-mentioned results indicate that V. parahaemolyticus could grow well regardless of the food type and that contrary to current belief, it displayed a higher hemolytic activity in some nonseafood products (freshwater fish, egg fried rice, and chicken) than in one seafood (oyster). The prediction system consisting of the growth model and hemolysin production algorithm reported here will fill a gap in predictive microbiology and improve significantly the accuracy of microbial risk assessment of V. parahaemolyticus.
Collapse
Affiliation(s)
- Rundong Wang
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Lijun Sun
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Yaling Wang
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Yijia Deng
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Zhijia Fang
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Yang Liu
- 2 National Marine Products Quality Supervision & Inspection Center, Zhanjiang 524000, People's Republic of China; and
| | - Ying Liu
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Dongfang Sun
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Qi Deng
- 1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution 524088, People's Republic of China
| | - Ravi Gooneratne
- 3 Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| |
Collapse
|
10
|
Guérin A, Dargaignaratz C, Broussolle V, Clavel T, Nguyen-the C. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Food Microbiol 2016; 59:119-23. [DOI: 10.1016/j.fm.2016.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
|
11
|
Behavior of Vibrio parahemolyticus cocktail including pathogenic and nonpathogenic strains on cooked shrimp. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Multi-criteria framework as an innovative tradeoff approach to determine the shelf-life of high pressure-treated poultry. Int J Food Microbiol 2016; 233:60-72. [DOI: 10.1016/j.ijfoodmicro.2016.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/11/2016] [Accepted: 05/29/2016] [Indexed: 11/22/2022]
|
13
|
|